Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas

, Volume 105, Issue 2, pp 247-260

First online:

Compact composition operators on Hardy-Orlicz and Bergman-Orlicz spaces

  • Daniel LiAffiliated withUniv Lille-Nord-de-FranceUArtois, Laboratoire de Mathématiques de Lens EA 2462, Fédération CNRS Nord-Pas-de-Calais FR 2956, Faculté des Sciences Jean Perrin Email author 

Rent the article at a discount

Rent now

* Final gross prices may vary according to local VAT.

Get Access


It is known, from results of MacCluer and Shapiro (Canad. J. Math. 38(4):878–906, 1986), that every composition operator which is compact on the Hardy space H p , 1 ≤ p < ∞, is also compact on the Bergman space \({{\mathfrak B}^p = L^{p}_{a} ({\mathbb D})}\). In this survey, after having described the above known results, we consider Hardy-Orlicz H Ψ and Bergman-Orlicz \({{\mathfrak B}^\Psi}\) spaces, characterize the compactness of their composition operators, and show that there exist Orlicz functions for which there are composition operators which are compact on H Ψ but not on \({{\mathfrak B}^\Psi}\).


Bergman spaces Bergman-Orlicz spaces Blaschke product Carleson function Carleson measure Compactness Composition operator Hardy spaces Hardy-Orlicz spaces Nevanlinna counting function

Mathematics Subject Classification (2000)

Primary 47B33 Secondary 30H10 30H20 30J10 46E15