Skip to main content

Advertisement

Log in

Graphical construction of a local perspective on differentiation and integration

Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

Recent studies of the transition from school to university mathematics have identified a number of epistemological gaps, including the need to change from an emphasis on equality to that of inequality. Another crucial epistemological change during this transition involves the movement from the pointwise and global perspectives of functions usually established through the school curriculum to a view of function that includes a local, or interval, perspective. This is necessary for study of concepts such as continuity and limit that underpin calculus and analysis at university. In this study, a first-year university calculus course in Korea was constructed that integrated use of digital technology and considered the epistemic value of the associated techniques. The aim was to encourage versatile thinking about functions, especially in relation to properties arising from a graphical investigation of differentiation and integration. In this paper, the results of this approach for the learning of derivative and antiderivative, based on integrated technology use, are presented. They show the persistence of what Tall (Mathematics Education Research Journal, 20(2), 5–24, 2008) describes as symbolic world algebraic thinking on the part of a significant minority of students, who feel the need to introduce algebraic methods, in spite of its disadvantages, even when no explicit algebra is provided. However, the results also demonstrate the ability of many of the students to use technology mediation to build local or interval conceptual thinking about derivative and antiderivative functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274. doi:10.1023/A:1022103903080.

    Article  Google Scholar 

  • Artigue, M. (2009). L’enseignement des fonctions à la transition lycée–université. In B. Grugeon (Ed.), Actes du XVe Colloque CORFEM 2008 (pp. 25–44). IUFM de Versailles: Université de Cergy-Pontoise.

    Google Scholar 

  • Baroody, A. J., & Dowker, A. (Eds.). (2003). The development of arithmetic concepts and skills: constructing adaptive expertise. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Berry, J. S., & Nyman, M. A. (2003). Promoting students’ understanding of the calculus. The Journal of Mathematical Behavior, 22, 481–497.

    Article  Google Scholar 

  • Dubinsky, E., & McDonald, M. (2001). APOS: a constructivist theory of learning. In D. Holton (Ed.), The teaching and learning of mathematics at university level: an ICMI study (pp. 275–282). Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Duval, R. (2006). A cognitive analysis of problems of comprehension in a learning of mathematics. Educational Studies in Mathematics, 61, 103–131.

    Article  Google Scholar 

  • Graham, A. T., & Thomas, M. O. J. (2000). Building a versatile understanding of algebraic variables with a graphic calculator. Educational Studies in Mathematics, 41(3), 265–282.

    Article  Google Scholar 

  • Graham, A. T., Pfannkuch, M., & Thomas, M. O. J. (2009). Versatile thinking and the learning of statistical concepts. ZDM: The International Journal on Mathematics Education, 45(2), 681–695.

    Article  Google Scholar 

  • Gray, E. M., & Tall, D. O. (1994). Duality, ambiguity and flexibility: a proceptual view of simple arithmetic. Journal for Research in Mathematics Education, 26(2), 115–141.

    Google Scholar 

  • Gray, R., & Thomas, M. O. J. (2001). Procedural and conceptual interactions with quadratic equation representations. Science and Mathematics Education Papers (SAMEpapers), Waikato University, 113–128.

  • Hatano, G., & Oura, Y. (2003). Commentary: reconceptualizing school learning using insight from expertise research. Educational Researcher, 32(8), 26–29.

    Article  Google Scholar 

  • Heid, M. K., Thomas, M. O. J., & Zbiek, R. M. (2013). How might computer algebra systems change the role of algebra in the school curriculum? In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 597–642). Dordrecht: Springer.

    Google Scholar 

  • Lagrange, J.-B. (2003). Learning techniques and concepts using CAS: a practical and theoretical reflection. In J. T. Fey, A. Cuoco, C. Kieran, L. McMullin, & R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 269–283). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Oates, G. (2011). Sustaining integrated technology in undergraduate mathematics. International Journal of Mathematical Education in Science and Technology, 42(6), 709–721.

    Article  Google Scholar 

  • Pierce, R., Stacey, K., & Wander, R. (2010). Examining the didactic contract when handheld technology is permitted in the mathematics classroom. ZDM International Journal of Mathematics Education, 42, 683–695. doi:10.1007/s11858-010-0271-8.

    Article  Google Scholar 

  • Stewart, S. & Thomas, M. O. J. (2007). Embodied, symbolic and formal aspects of basic linear algebra concepts, In J-H. Woo, H-C. Lew, K-S. Park, & D-Y. Seo (Eds.) Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education, (Vol. 4, pp. 201–208). Seoul, Korea.

  • Stewart, S., & Thomas, M. O. J. (2009). A framework for mathematical thinking: the case of linear algebra. International Journal of Mathematical Education in Science and Technology, 40(7), 951–961.

    Article  Google Scholar 

  • Stewart, S., Thomas, M. O. J., & Hannah, J. (2005). Towards student instrumentation of computer-based algebra systems in university courses. International Journal of Mathematical Education in Science and Technology, 36, 741–750. doi:10.1080/00207390500271651.

    Article  Google Scholar 

  • Tall, D. O. (2004a). Building theories: the three worlds of mathematics. For the Learning of Mathematics, 24(1), 29–32.

    Google Scholar 

  • Tall, D. O. (2004b). Thinking through three worlds of mathematics. In M. J. Hoines & A. B. Fuglestad (Eds.), Proceedings of the 28th conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 281–288). Bergen: Bergen University College.

    Google Scholar 

  • Tall, D. O. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5–24.

    Article  Google Scholar 

  • Tall, D. O. (2013). How humans learn to think mathematically: exploring the three worlds of mathematics (learning in doing: social, cognitive and computational perspectives). Cambridge: CUP.

    Book  Google Scholar 

  • Tall, D. O., & Thomas, M. O. J. (1991). Encouraging versatile thinking in algebra using the computer. Educational Studies in Mathematics, 22, 125–147.

    Article  Google Scholar 

  • Thomas, M. O. J. (2002). Versatile thinking in mathematics. In D. O. Tall & M. O. J. Thomas (Eds.), Intelligence, learning and understanding in mathematics (pp. 179–204). Flaxton, Queensland, Australia: Post Pressed.

    Google Scholar 

  • Thomas, M. O. J. (2008). Developing versatility in mathematical thinking. Mediterranean Journal for Research in Mathematics Education, 7(2), 67–87.

    Google Scholar 

  • Thomas, M. O. J., & Holton, D. (2003). Technology as a tool for teaching undergraduate mathematics. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (Vol. 1, pp. 347–390). Dordrecht: Kluwer.

    Google Scholar 

  • Thomas, M. O. J., & Stewart, S. (2011). Eigenvalues and eigenvectors: embodied, symbolic and formal thinking. Mathematics Education Research Journal, 23(3), 275–296. doi:10.1007/s13394-011-0016-1.

    Article  Google Scholar 

  • Thomas, M. O. J., Monaghan, J., & Pierce, R. (2004). Computer algebra systems and algebra: curriculum, assessment, teaching, and learning. In K. Stacey, H. Chick, & M. Kendal (Eds.), The teaching and learning of algebra: the 12th ICMI study (pp. 155–186). Norwood, MA: Kluwer Academic Publishers.

    Google Scholar 

  • Thomas, M. O. J., De Freitas Druck, I., Huillet, D., Ju, M-K., Nardi, E., Rasmussen, C., & Xie, J. (2012). Key mathematical concepts in the transition from secondary to university. Proceedings of the 12th International Congress On Mathematical Education (ICME-12) Survey Team 4, 90–136, Seoul, Korea. Available from http://faculty.math.tsinghua.edu.cn/~jxie/papers/icme2012_ST4.pdf

  • Vandebrouck, F. (2011). Students’ conceptions of functions at the transition between secondary school and university. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the 7th conference of European Researchers in Mathematics Education (pp. 2093–2102). Poland: Rzeszow.

    Google Scholar 

  • Verschaffel, L., Luwel, K., Torbeyns, J., & Van Dooren, W. (2007). Developing adaptive expertise: a feasible and valuable goal for (elementary) mathematics education? Ciencias Psicologicas, 1, 27–35.

    Google Scholar 

  • Yoon, C., Thomas, M. O. J., & Dreyfus, T. (2009). Gestures and virtual space. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd conference of the International Group for the Psychology of Mathematics Education (Vol. 5, pp. 409–416). Thessaloniki, Greece: PME.

    Google Scholar 

  • Yoon, C., Thomas, M. O. J., & Dreyfus, T. (2011). Grounded blends and mathematical gesture spaces: developing mathematical understandings via gestures. Educational Studies in Mathematics, 78(3), 371–393. doi:10.1007/s10649-011-9329-y.

    Article  Google Scholar 

  • Zbiek, R. M., & Heid, M. K. (2011). Using technology to make sense of symbols and graphs and to reason about general cases. In T. Dick & K. Hollebrands (Eds.), Focus on reasoning and sense making: technology to support reasoning and sense making (pp. 19–31). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

Download references

Acknowledgments

This paper builds on ideas published in the 2013 proceedings of the conference for the International Group for the Psychology of Mathematics Education (IGPME) held in Kiel, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. J. Thomas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y.Y., Thomas, M.O.J. Graphical construction of a local perspective on differentiation and integration. Math Ed Res J 27, 183–200 (2015). https://doi.org/10.1007/s13394-014-0135-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-014-0135-6

Keywords

Navigation