Skip to main content
Log in

Enhanced photoelectrochemical water splitting and photocatalytic water oxidation of Cu2O nanocube-loaded BiVO4 nanocrystal heterostructures

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Reducing the fast recombination of photogenerated electron-hole pairs of semiconductor photocatalyst is very important to improve its photocatalysis. In this paper we fabricate Cu2O nanocube-decorated BiVO4 nanocrystal (denoted as BiVO4@Cu2O nanocrystal@nanocube) heterostructure photocatalyst by coupling n-type BiVO4 with p-type Cu2O. The BiVO4@Cu2O nanocrystal@nanocube photocatalysts show superior photocatalytic activities in photoelectrochemical (PEC) activity and photocatalytic water oxidation to BiVO4 photocatalysts under visible light illumination. The BiVO4@Cu2O nanocrystal@nanocube heterostructure electrode achieves the highest photocurrent density of ∼ 10 μA cm−2 at 0 V versus Ag/AgCl, 5 times higher than that of BiVO4 nanocrystal electrode (∼ 2 μA cm−2). The light induced evolution rate of O2 generation for BiVO4@Cu2O nanocrystal@nanocube heterostructures is as high as 150 μmol h−1100 mg cat−1, more than 3 times higher than that (48 μmol h−1100 mg cat−1) of BiVO4 nanocrystals. The enhanced photocatalysis activities of the BiVO4@Cu2O nanocrystal@nanocube photocatalysts are attributed to the efficient separation of the photoexcited electron-hole pairs caused by inner electronic field (IEF) of p-n junction. This study opens up new opportunities in designing photoactive materials with highly enhanced performance for solar energy conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Chen, S. Shen, L. Guo, and S. S. Mao, Chem. Rev. 111, 6503 (2010).

    Article  Google Scholar 

  2. A. Paracchino, V. Laporte, K. Sivula, M. Gratzel, and E. Thimsen, Nat. Mater. 10, 456 (2011).

    Article  Google Scholar 

  3. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev. 111, 6446 (2010).

    Article  Google Scholar 

  4. H. S. Kim, K.-S. Ahn, and S. H. Kang, Electron. Mater. Lett. 10, 345 (2014).

    Article  Google Scholar 

  5. Y. J. Lin, S. Zhou, S. W. Sheehan, and D. W. Wang, J. Am. Chem. Soc. 133, 2398 (2011).

    Article  Google Scholar 

  6. A. Yamaguchi, R. Inuzuka, T. Takashima, T. Hayashi, K. Hashimoto, and R. Nakamura, Nat. Commun. 5, 4256 (2014).

    Article  Google Scholar 

  7. Y. H. Pu, G. M. Wang, K. D. Chang, Y. C. Ling, Y. K. Lin, B. C. Fitzmorris, C. M. Liu, X. H. Lu, Y. X. Tong, J. Z. Zhang, Y. J. Hsu, and Y. Li, Nano Lett. 13, 3817 (2013).

    Article  Google Scholar 

  8. X. F. Zhang, Y. Gong, X. L. Dong, X. X. Zhang, C. Ma, and F. Shi, Mater. Chem. Phys. 136, 472 (2012).

    Article  Google Scholar 

  9. Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, J. Phys. Chem. Lett. 1, 2607 (2010).

    Article  Google Scholar 

  10. A. L. Linsebigler, G. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).

    Article  Google Scholar 

  11. D. B. Ingram and S. Linic, J. Am. Chem. Soc. 133, 5202 (2011).

    Article  Google Scholar 

  12. Y. Lin, Y. Xu, M. T. Mayer, Z. I. Simpson, G. McMahon, S. Zhou, and D. Wang, J. Am. Chem. Soc. 134, 5508 (2012).

    Article  Google Scholar 

  13. S. Mandati, B. V. Sarada, S. R. Dey, and S. V. Joshi, Electron. Mater. Lett. 11, 618 (2015).

    Article  Google Scholar 

  14. J. T. Li, F. K. Meng, S. Suri, W. Q. Ding, F. Q. Huang, and N. Q. Wu, Chem. Commun. 48, 8213 (2012).

    Article  Google Scholar 

  15. M. Long, W. M. Cai, and H. Kisch, J. Phys. Chem. C 112, 548 (2008).

    Article  Google Scholar 

  16. Y. X. Yu, W. X. Ouyang, Z. T. Liao, B. B. Du, and W. D. Zhang, ACS Appl. Mater. Interfaces 6, 8467 (2014).

    Article  Google Scholar 

  17. Y. Park, K. J. McDonald, and K. S. Choi, Chem. Soc. Rev. 42, 2321 (2013).

    Article  Google Scholar 

  18. T. W. Kim and K. S. Choi, Science 343, 990 (2014).

    Article  Google Scholar 

  19. A. Kudo, K. Omori, and H. Kato, J. Am. Chem. Soc. 121, 11459 (1999).

    Article  Google Scholar 

  20. F. F. Abdi and R. van de Krol, J. Phys. Chem. C 116, 9398 (2012).

    Article  Google Scholar 

  21. D. K. Zhong, S. Choi, and D. R. Gamelin, J. Am. Chem. Soc. 133, 18370 (2011).

    Article  Google Scholar 

  22. C. K. Wu, M. Yin, S. O’Brien, and J. T. Koberstein, Chem. Mater. 18, 6054 (2006).

    Article  Google Scholar 

  23. C. D. Wagner, W. M. Riggs, L. E. Davis, J. E. Moulder, and G. E. Muilenber, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation Physical Electronics Division, USA (1979).

    Google Scholar 

  24. H. Q. Jiang, H. Endo, H. Natori, M. Nagai, and K. Kobayashi, Mater. Res. Bull. 44, 700 (2009).

    Article  Google Scholar 

  25. Y. Ohko, K. Hashimoto, and A. Fujishima, J. Phys. Chem. A 101, 8057 (1997).

    Article  Google Scholar 

  26. Y. M. He, J. Cai, T. T. Li, Y. Wu, H. J. Lin, L. H. Zhao, and M. F. Luo, Chem. Eng. J. 215-216, 721 (2013).

    Article  Google Scholar 

  27. X. Nie, J. Y. Chen, G. Y. Li, H. X. Shi, H. J. Zhao, P. K. Wong, and T. C. An, J. Chem. Technol. Biotechnol. 88, 1488 (2013).

    Article  Google Scholar 

  28. P. He, X. Shen, and H. Gao, J. Colloids Interface Sci. 284, 510 (2005).

    Article  Google Scholar 

  29. P. Chatchai, Y. Murakami, S. Y. Nosaka, A. Y. Kishioka, and Y. Nosaka, Electrochim. Acta 54, 1147 (2009).

    Article  Google Scholar 

  30. H. Xu, H. Li, C. Wu, J. Chu, Y. Yan, H. Shu, and Z. Gu, J. Hazard. Mater. 153, 877 (2008).

    Article  Google Scholar 

  31. W. Y. Yang and S. W. Rhee, Appl. Phys. Lett. 91, 232907 (2007).

    Article  Google Scholar 

  32. M. C. Long, W. M. Cai, J. Cai, B. X. Zhou, X. Y. Chai, and Y. H. Wu, J. Phys. Chem. B 110, 20211 (2006).

    Article  Google Scholar 

  33. V. Subramanian, E. E. Wolf, and P. V. Kamat, J. Am. Chem. Soc. 126, 4943 (2004).

    Article  Google Scholar 

  34. J. W. Tang, J. R. Durrant, and D. R. Klug, J. Am. Chem. Soc. 130, 13885 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenzhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Zhang, W., Meng, S. et al. Enhanced photoelectrochemical water splitting and photocatalytic water oxidation of Cu2O nanocube-loaded BiVO4 nanocrystal heterostructures. Electron. Mater. Lett. 12, 753–760 (2016). https://doi.org/10.1007/s13391-016-6224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-016-6224-9

Keywords

Navigation