Skip to main content
Log in

The proton dissociation constant of additive effect on self-assembly of poly(3-hexyl-thiophene) for organic solar cells

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

In the decision on the pros and cons of the optical and electrical properties of organic solar cells, the morphology has proven to be very important. Easy to change the morphology via adding a small amount of additive, because proton dissociation constant is the main reason for their application. In this study, the use of poly(3-hexylthiophene) and [6,6]-phenyl C 61-butyric acid methyl ester as the donor and acceptor materials, and were subsequently doped with different quantity of 4,4′-sulfonyldiphenol, 4,4′-dihydroxybiphenyl, biphenyl-4,4′-dithiol. When the proton dissociation constant is higher and lower respectively, the morphology reveals earthworms-like and fiber-like. For the reason that when the additive is biphenyl-4,4′-dithiol, it can improve the power conversion efficiency of about 27% and the incident photon-to-current conversion efficiency of about 12%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. C. Thompson and J. M. J. Frechet, Angew. Chem., Int. Ed. 47, 58 (2008).

    Article  Google Scholar 

  2. G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. 21, 1323 (2009).

    Article  Google Scholar 

  3. L.-M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 21, 1434 (2009).

    Article  Google Scholar 

  4. Y. Yao, J. Hou, Z. Xu, G. Li, and Y. Yang, Adv. Funct. Mater. 18, 1783 (2008).

    Article  Google Scholar 

  5. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).

    Article  Google Scholar 

  6. J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater. 6, 497 (2007).

    Article  Google Scholar 

  7. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).

    Article  Google Scholar 

  8. Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics 6, 591 (2012).

    Google Scholar 

  9. M. Kaltenbrunner, M. S. White, E. D. Gtowacki, T. Sekitani, T. Someya, N. Sariciftci, and S. Bauer, Nat. Commun. 3, 770 (2012).

    Article  Google Scholar 

  10. Y. S. Tsai, J.-S. Lin, W.-P. Chu, P.-H. Wang, F.-S. Juang, M.-H. Chung, C.-M. Chen, and M. O. Liu, Curr. Appl. Phys. 10, S502 (2010).

    Article  Google Scholar 

  11. W. Y. Huang, C. C. Lee, S. G. Wang, Y. K. Han, and M. Y. Chang, J. Electrochem. Soc. 157, B1336 (2010).

    Article  Google Scholar 

  12. W. Y. Huang, C. C. Lee, and T. L. Hsieh, Sol. Energ. Mat. Sol. C. 93, 382 (2009).

    Article  Google Scholar 

  13. Y. Liang, Z. Xu, J. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. 22, E135 (2010).

    Article  Google Scholar 

  14. T.-Y. Chu, J. Lu, S. Beaupr, Y. Zhang, J.-R. Pouliot, S. Wakim, J. Zhou, M. Leclerc, Z. Li, J. Ding, and Y. Tao, J. Am. Chem. Soc. 133, 4250 (2011).

    Article  Google Scholar 

  15. J. H. Seo, A. Gutacker, Y. Sun, H. Wu, F. Huang, Y. Cao, U. Scherf, A. J. Heeger, and G. C. Bazan, J. Am. Chem. Soc. 133, 8416 (2011).

    Article  Google Scholar 

  16. Y. Liu, Y. (Michael) Yang, C.-C. Chen, Q. Chen, L. Dou, Z. Hong, G. Li, and Y. Yang, Adv. Mater. 25, 4657 (2013).

    Article  Google Scholar 

  17. L. Dou, C.-C. Chen, K. Yoshimura, K. Ohya, W.-H. Chang, J. Gao, Y. Liu, E. Richard, and Y. Yang, Macromolecules 46, 3384 (2013).

    Article  Google Scholar 

  18. J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. X. S. Ye, J. Gao, G. Li, Y. Yang, Adv. Mater. 25, 3973 (2013).

    Article  Google Scholar 

  19. S. A. Hawks, F. Deledalle, J. Yao, D. G. Rebois, G. Li, J. Nelson, Y. Yang, T. Kirchartz, and J. R. Durrant, Adv. Energy Mater. 3, 1201 (2013).

    Article  Google Scholar 

  20. P. E. Keivanidis, T. M. Clarke, S. Lilliu, T. Agostinelli, J. E. Macdonald, J. R. Durrant, D. D. C. Bradley, and J. Nelson, J. Phys. Chem. Lett. 1, 734 (2010).

    Article  Google Scholar 

  21. M. F. G. Klein, F. M. Pasker, S. Kowarik, D. Landerer, M. Pfa, M. Isen, D. Gerthsen, U. Lemmer, S. Hoger, and A. Colsmann, Macromolecules 46, 3870 (2013).

    Article  Google Scholar 

  22. H.-Y. Chen, H. Yang, G. Yang, S. Sista, R. Zadoyan, G. Li, and Y. Yang, J. Phys. Chem. C 113, 7946 (2009).

    Article  Google Scholar 

  23. T. L. Andrew and V. Bulovic, ACS Nano 6, 4671 (2012).

    Article  Google Scholar 

  24. E. Wang, Z. Ma, Z. Zhang, K. V., P. Henriksson, O. Inganas, F. Zhang, and M. R. Andersson, J. Am. Chem. Soc. 133, 14244 (2011).

    Article  Google Scholar 

  25. J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619 (2008).

    Article  Google Scholar 

  26. T. Salim, L. H. Wong, B. Brauer, R. Kukreja, Y. L. Foo, Z. Bao, and Y. M. Lam, J. Mater. Chem. 21, 242 (2011).

    Article  Google Scholar 

  27. M. T. Lee, C. K. Yen, W. P. Yang, H. H. Chen, C. H. Liao, C. H. Tsai, and C. H. Chen, Org. Lett. 6, 1241 (2004).

    Article  Google Scholar 

  28. W.-T. Liu, P.-H. Wang, H.-F. Lee, Y.-C. Huang, and W.-Y. Huang, J. Solid State Sci. Tech. 2, R142 (2013).

    Article  Google Scholar 

  29. Z. Liang, M. O. Reese, and B. A. Gregg, ACS Appl. Mater. Interfaces 3, 2042 (2011).

    Article  Google Scholar 

  30. K. Geramita, Y. Tao, R. A. Segalman, and T. D. Tilley, J. Org. Chem. 75, 1871 (2010).

    Article  Google Scholar 

  31. Y. Li, K. Kamata, S. Asaoka, T. Yamagishi, and T. Iyoda, Org. Biomol. Chem. 1, 1779 (2003).

    Article  Google Scholar 

  32. G. Li, Y. Yao, H. Yang, V. Shirotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).

    Article  Google Scholar 

  33. Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C.-S. Ha, and M. Ree, Nat. Mater. 5, 197 (2006).

    Article  Google Scholar 

  34. P. J. Brown, D. S. Thomas, A. Kohler, J. S. Wilson, J.-S. Kim, C. M. Ramsdale, H. Sirringhaus, and R. H. Friend, Phys. Rev. B 67, 064203-1 (2003).

    Google Scholar 

  35. T.-Q. Nguyen, R. C. Kwong, M. E. Thompson, and B. J. Schwartz, Appl. Phys. Lett. 76, 2454 (2000).

    Article  Google Scholar 

  36. E. M. Conwell, C. B. Duke, A. Paton, and S. Jeyadev, J. Chem. Phys. 88, 3331 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Yao Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, PH., Lee, HF., Huang, YC. et al. The proton dissociation constant of additive effect on self-assembly of poly(3-hexyl-thiophene) for organic solar cells. Electron. Mater. Lett. 10, 767–773 (2014). https://doi.org/10.1007/s13391-013-3274-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3274-0

Keywords

Navigation