Skip to main content
Log in

Properties of the nano-thick Pt/W bilayered catalytic layer employed dye sensitized solar cells

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

A Pt/W bilayered catalytic layer on a flat glass substrate was used as a counter electrode to improve the energy conversion efficiency of a dye-sensitized solar cell device with the structure of 0.45 cm2 effective area of glass/FTO/blocking layer/TiO2/N719 (dye)/electrolyte/50 nm Pt/50 nm W/glass. For comparison, 100 nm-thick Pt and W counter electrodes on flat glass substrates were also prepared using the same procedure. The photovoltaic properties, such as the short circuit current density, open circuit voltage, fill factor, energy conversion efficiency and impedance were characterized using a solar simulator and potentiostat. The phases and microstructures of the catalytic layers were examined by x-ray diffraction and field emission electron microscopy. The measured energy conversion efficiencies of the dye-sensitized solar cell devices with Pt only and Pt/W bilayer counter electrodes were 4.60% and 6.54%, respectively. The interface resistance at the interface between the counter electrode and electrolyte decreased when a Pt/W bilayered thin film was applied. The increase in efficiency resulted from the effect of compressive strain field formed by the intermetallic layer of Pt2W at Pt and W layer interface. This suggests that the use of Pt/W bilayered catalytic layers improves the efficiency of the dye-sensitized solar cells compared to those using the conventional Pt layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Gratzel, Inorg. Chem. 44, 6841 (2005).

    Article  Google Scholar 

  2. K. Sayama, H. Sugihara, and H. Arakawa, Chem. Mater. 10, 3825 (1998).

    Article  Google Scholar 

  3. M. Gratzel, Prog. Photovolt. Res. Appl. 8, 171 (2000).

    Article  Google Scholar 

  4. G. Schlichthorl, N. G. Park, and A. J. Frank, J. Phys. Chem. B 103, 782 (1999).

    Article  Google Scholar 

  5. P. Le, J. Wu, J. Lin, M. Huang, Y. Huang, and Q. Li, Solar Energy 83, 845 (2009).

    Article  Google Scholar 

  6. B. O’Regan and M. Gratzel, Nature 353, 737 (1991).

    Article  Google Scholar 

  7. T. Prakash, Electron. Mater. Lett. 8, 231 (2012).

    Article  Google Scholar 

  8. N. Papageorgiou, W. F. Maier, and M. Grätzel, J. Electrochem. Soc. 144, 876 (1997).

    Article  Google Scholar 

  9. H. Bonnemann, G. Khelashvili, S. Behrens, A. Hinsch, K. Skupien, and E. Dinjus, J. Cluster Science 18, 141 (2007).

    Article  Google Scholar 

  10. H. M. Kwon, D. W. Han, D. J. Kwak, and Y. M. Sung, Appl. Phys. 10, 172 (2010).

    Google Scholar 

  11. S. U. Lee, W. S. Choi, and B. Hong, Solar Energy & Solar Cells 94, 680 (2010).

    Article  Google Scholar 

  12. J. G. Nam, Y. J. Park, B. S. Kim, and J. S. Lee, Scripta Materialia 62, 148 (2010).

    Article  Google Scholar 

  13. T. N. Murakami, S. Ito, Q. Wang, Md. K. Nazeeruddin, T. Bessho, I. Cesar, P. Liska, R. H. Baker, P. Comte, P. Pechy, and M. Gratzel, J. Electrochem. Soc. 153, 2255 (2006).

    Article  Google Scholar 

  14. Y. Y. Noh and O. S. Song, J. Korean Inst. Met. & Mater. 51, 71 (2013).

    Google Scholar 

  15. J. J. Han, K. C. Yoo, M. J. Ko, B. K. Yu, Y. Y. Noh, and O. S. Song, Met. Mater. Int. 18, 105 (2012).

    Article  Google Scholar 

  16. Y. Y. Noh, K. C. Yoo, B. K. Yu, J. J. Han, M. J. Ko, and O. S. Song, J. Korean Inst. Met. & Mater. 50, 159 (2012).

    Google Scholar 

  17. Y. Y. Noh and O. S. Song, J. Korean Inst. Met. & Mater. in press (2013).

    Google Scholar 

  18. Y. Y. Noh and O. S. Song, J. Korean Inst. Met. & Mater. in press (2013).

    Google Scholar 

  19. P. K. Shen and A. C. C. Tseung, J. Electrochem. Soc. 141, 3082 (1994).

    Article  Google Scholar 

  20. F. J. de la Mata and R. H. Grubbs, Organometallics 15, 577 (1996).

    Article  Google Scholar 

  21. M. Mavrikakis, B. Hammer, and J. K. Norskov, Phys. Rev. Lett. 81, 2819 (1998).

    Article  Google Scholar 

  22. J. X. Wang, H. Inada, L. Wu, Y. Zhu, Y. Choi, P. Liu, W. P. Zhou, and R. R. Adzic, J. Am. Chem. Soc. 131, 17298 (2009).

    Article  Google Scholar 

  23. Y. Xu, A. V. Ruban, and M. Mavrikakis, J. Am. Chem. Soc. 126, 4717 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ohsung Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, Y., Song, O. Properties of the nano-thick Pt/W bilayered catalytic layer employed dye sensitized solar cells. Electron. Mater. Lett. 10, 627–630 (2014). https://doi.org/10.1007/s13391-013-3257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-3257-1

Keywords

Navigation