Skip to main content
Log in

Improved dielectric properties of BaTiO3-added CaCu3Ti4O12 polycrystalline ceramics

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

The effects of the BaTiO3 (BTO) additive on the electrical properties of CaCu3Ti4O12 (CCTO) polycrystalline ceramics were systematically investigated. Various amounts of BTO powder up to 15 mol. % were added to CCTO powder. Each batch was ball-milled, pressed into pellets, and finally sintered at 1060°C for 12 h in air. Compared with pure CCTO sample (ɛ r ∼ 52,000 and tan δ ∼ 0.38 at 100 kHz), BTO-added CCTO samples commonly showed significantly reduced dielectric losses although their dielectric constants were decreased approximately by one order of magnitude (for instance, ɛ r ∼ 4,075 and tan δ ∼ 0.02 at 100 kHz for 5 mol. % BTO-added CCTO sample). In addition, the breakdown voltages of BTO-added CCTO samples were much higher than that of pure CCTO sample, and thus the leakage currents were greatly reduced at the applied voltage above ∼ 10 V. A large reduction in the dielectric losses and leakage currents is attributed to the secondary phases segregated at the CCTO grain boundary which are composed of CaTiO3, Ba4Ti12O27, and unreacted BTO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Subramanian, D. Li, N. Duan, B. A. Reisner, and A. W. J. Sleight, J. Sol. Stat. Chem. 151, 323 (2000).

    Article  CAS  Google Scholar 

  2. C. C. Homes, T. Vogt, S. M. Shapiro, S. Wakimoto, and A. P. Ramirez, Science 293, 673 (2001).

    Article  CAS  Google Scholar 

  3. A. P. Ramirez, M. A. Subramanian, and M. Gardel, Sol. Stat. Comm. 115, 217 (2000).

    Article  CAS  Google Scholar 

  4. G. Deng, Z. He, and P. Muralt, J. Appl. Phys. 105, 084106 (2009).

    Article  Google Scholar 

  5. D. C. Sinclair, T. B. Adams, and F. D. Morrison, Appl. Phys. Lett. 80, 2153 (2002).

    Article  CAS  Google Scholar 

  6. M. Li, A. Feteria, D. C. Sinclair, and A. R. West, Appl. Phys. Lett. 88, 232903 (2006).

    Article  Google Scholar 

  7. S. Kwon, C. C. Huang, and D. P. Cann, Appl. Phys. Lett. 87, 182911 (2006).

    Google Scholar 

  8. K. M. Kim, S. J. Kim, J. H. Lee, and D. Y. Kim, J. Euro. Ceram. Soc. 27, 3991 (2007).

    Article  CAS  Google Scholar 

  9. S. F. Shao, J. L. Zheng, P. Zheng, and C. L. Wang, Solid State Commun. 142, 281 (2007).

    Article  CAS  Google Scholar 

  10. S. Y. Lee, D. K. Yoo, and S. I. Yoo, Electron. Mater. Lett. 3, 23 (2007).

    CAS  Google Scholar 

  11. H. Yu, H. Liu, D. Luo, and M. Cao, J. Mat. Process. Technol. 208, 145 (2008).

    Article  CAS  Google Scholar 

  12. L. J. Liu, H. Q. Fan, X. L. Chen, and P. Y. Fang, J. Alloy. Compd. 43, 1800 (2008).

    CAS  Google Scholar 

  13. P. B. A. Fechine, A. F. L. Almeida, F. N. A. Freire, M. R. P. Santos, F. M. M. Pereira, R. Jimenez, J. Mendiola, and A. S. B. Sombra, Mater. Chem. Phys. 96, 402 (2006).

    Article  CAS  Google Scholar 

  14. G. Yang, Z. X. Yue, X. Li, T. Wang, L. and T. Li, Key Eng. Mater. 368–372, 62 (2008).

    Article  Google Scholar 

  15. L. Ramajo, P. Parra, J. A. Varela, M. M. Reboredo, M. A. Ramirez, and M. S. Castro, J. Alloy. Compd. 497, 349 (2010).

    Article  CAS  Google Scholar 

  16. H. Yu, H. Liu, H. Hao, D. Lou, and M. Cao, Mater. Lett. 62, 1353 (2008).

    Article  CAS  Google Scholar 

  17. M. A. Ramirez, P. R. Bueno, E. Longo, and J. A. Varela, J. Phys. D: Appl. Phys. 41, 152004 (2008).

    Article  Google Scholar 

  18. N. J. Phillips, M. L. Calzada, and S. J. Milne, J. Non-Cryst. Solids 147/148, 285 (1992).

    Article  Google Scholar 

  19. Y. Nosaka, M. Jimbo, M. Aizawa, and M. Fuji, J. Mater. Sci. Lett. 10, 406 (1991).

    Article  CAS  Google Scholar 

  20. N. D. S. Mchallem and M. Andre, Mater. Res. Soc. Symp. Proc. 121, 515 (1988).

    Article  Google Scholar 

  21. M. Boulos, S. Guillement-Fritsch, F. Mathieu, B. Durand, T. Lebey, and V. Bley, Solid State Ionics 176, 1301 (2005).

    Article  CAS  Google Scholar 

  22. H. Xu and L. Gao, J. Am. Ceram. Soc. 86, 203 (2003).

    Article  CAS  Google Scholar 

  23. V. Vinothini, P. Singh, and M. Balasubramanian, Ceram. Int. 32, 99 (2006).

    Article  CAS  Google Scholar 

  24. P. Duran, D. Gutierrez, J. Tartaj, and C. Moure, Ceram. Int. 28, 283 (2002).

    Article  CAS  Google Scholar 

  25. V. Buscaglia, M. Viviani, M. T. Buscaglia, P. Nanni, L. Mitoseriu, A. Testino, E. Stytsenko, M. Daglish, Z. Zhao, and M. Nygren, Powder Technology 148, 24 (2004).

    Article  CAS  Google Scholar 

  26. H. Chazono and H. Kishi, Jpn. J. Appl. Phys. 40, 5624 (2001).

    Article  CAS  Google Scholar 

  27. J. D. Kim, D. W. Kim, J. S. Kim, Y. N. Kim, K. N. Hui, and H. S. Lee, Electron. Mater. Lett. 7, 155 (2011).

    Article  CAS  Google Scholar 

  28. S. D. Yang, Growth and Dielectric Properties of CaCu 3 Ti 4 O 12 Single Crystals, pp. 33–36, Seoul National University, Seoul (2003).

    Google Scholar 

  29. S. Y. Lee, Y. W. Hong, and S. I. Yoo, Electron. Mater. Lett. 7, 287 (2011).

    Article  CAS  Google Scholar 

  30. L. Ni, X. M. Chen, X. Q. Liu, and R. Z. Hou, Solid State Commun. 139, 45 (2006).

    Article  CAS  Google Scholar 

  31. D. Capsoni, M. Bini, V. Massarotti, G. Chiodelli, M. C. Mozzatic, and C. B. Azzoni, J. Solid State. Chem. 177, 4494 (2004).

    Article  CAS  Google Scholar 

  32. T. T. Fang and L. T. Mei, J. Am. Ceram. Soc. 90, 638 (2007).

    Article  CAS  Google Scholar 

  33. T. T Fang and L. T. Mei, J. Am. Ceram. Soc. 87, 2072 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Im Yoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H.E., Choi, SM., Lee, SY. et al. Improved dielectric properties of BaTiO3-added CaCu3Ti4O12 polycrystalline ceramics. Electron. Mater. Lett. 9, 325–330 (2013). https://doi.org/10.1007/s13391-013-2202-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-2202-7

Keywords

Navigation