Skip to main content
Log in

Electrical properties of crystallized 30B2O3-70V2O5 glass

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

30B2O3-70V2O5 binary-system glass was prepared, and variations in structural and electrical property were examined using crystallization. While different related research studies exist, few have evaluated the variations in the structure and properties with changes in the crystallization rate. 30B2O3-70V2O5 glass was annealed in the graphite mold above the glass transition temperature for 2 h and heat-treated at each crystallization temperature for 3 h. 30B2O3-70V2O5 glass showed predominantly electronic conductive characteristic. FTIR was preferentially used for analyzing the structural changes of B-O bond after crystallization, while XRD was utilized to verify the inferred changes in the structure array (BO3 + V2O5 ↔ BO4 + 2VO2). Structural changes induced by heat treatment were confirmed by analyzing the molecular volume determined from the sample density, and conductance was measured to correlate structural and property changes. Conductivity is discussed based on the migration of vanadate ions with different valence states because of the increase in VO2 crystallinity at 130°C, which, however, was not observed at 170°C. After VO2 structures were reinforced, a 1.8-fold increase in conductance was observed (as compared to the annealed sample) after crystallization at 130°C for 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Kashif, H. Farouk, S. A. Aly, A. A. Abdel-Rahman, and A. M. Sanad, Mater. Sci. Eng. B10, 1 (1991).

    Article  CAS  Google Scholar 

  2. Y. Kawamoto, J. Tanida, H. Hamada, and H. Kiriyama, J. Non-Cryst. Solids 38, 301 (1980).

    Article  Google Scholar 

  3. G. S. Linsley, A. E. Owen, and F. M. Hayatee, J. Non-Cryst. Solids 4, 208 (1970).

    Article  CAS  Google Scholar 

  4. T. Allersma, R. Hakim, T. N. Kennedy, and J. D. Mackenzie, J. Chem. Phys. 1, 46 (1967).

    Google Scholar 

  5. Y. Limb and R. F. Davis, J. Am. Ceram. Soc. 26, 403 (1979).

    Article  Google Scholar 

  6. H. Kyungseok, H. Chawon, K. Donghwan, G. Donnggun, K. Taehee, C. Wonngyu, K. Kyungbumb, K. Jonghwan, and R. Bongki, Electron. Mater. Lett. 8, 655 (2012).

    Article  Google Scholar 

  7. M. L. Huggins and K. H. Sun, J. Am. Ceram. Soc. 26, 4 (1943).

    Article  CAS  Google Scholar 

  8. L. G. Gehring and M. A. Knight, J. Am. Ceram. Soc. 27, 260 (1944).

    Article  Google Scholar 

  9. Y. Ito, K. Miyauchi, and T. Oi, J. Non-Cryst. Solids 57, 389 (1983).

    Article  CAS  Google Scholar 

  10. B. K. Sharma and D. C. Dube, J. Non-Cryst. Solids 65, 39 (1984).

    Article  CAS  Google Scholar 

  11. B. N. Meera and J. Ramakrishna, J. Non-Cryst. Solids 159, 1 (1993).

    Article  CAS  Google Scholar 

  12. E. I. Kamitsos, M. A. Karakassides, and G. D. Chryssikos, J. Phys. Chem. 91, 1067 (1987).

    Article  CAS  Google Scholar 

  13. S. G. Motke, S. P. Yawale, and S. S. Yawale, Bull. Mater. Sci. 25, 75 (2002).

    Article  CAS  Google Scholar 

  14. A. Abd-El-Moneim, Mater. Chem. Phys. 73, 318 (2002).

    Article  CAS  Google Scholar 

  15. R. Lal and N. D. Sharma, Ind. J. Pure Appl. Phys. 43, 828 (2005).

    CAS  Google Scholar 

  16. A. A. Alemi, H. Sedghi, A. R. Mirmohseni, and V. Golsanamlu, Bull. Mater. Sci. 29, 55 (2006).

    Article  CAS  Google Scholar 

  17. Y. D. Yiannopoulos, G. D. Chryssikos, and E. I. Kamitsos, Phys. Chem. Glasses 42, 164 (2001).

    CAS  Google Scholar 

  18. E. E. Horopanitis, G. Perentzis, A. Beck, L. Guczi, G. Peto, and Papadimitriou, J. Non-Cryst. Solids 354, 374 (2008).

    Article  CAS  Google Scholar 

  19. E. Kamitos, A. Patsis, M. Karakassides, and G. Chryssikos, J. Non-Cryst. Solids 126, 52 (1990).

    Article  Google Scholar 

  20. E. Kamitos, Karakassides, and G. Chryssikos, J. Phys. Chem. Glasses 91, 1073 (1987).

    Article  Google Scholar 

  21. E. Kamitos, A. Patsis, and G. Chryssikos, J. Non-Cryst. Solids 152, 246 (1993).

    Article  Google Scholar 

  22. V. Dimitrov, Y. Dimitriev, and A. Montenero, J. Non-Cryst. Solids 180, 51 (1994).

    Article  CAS  Google Scholar 

  23. Y. Dimitriev, V. Dimitrov, M. Arnaudov, and D. Topalov, J. Non-Cryst. Solids 17, 147 (1983).

    Article  Google Scholar 

  24. I. Plusnina, Infrared Spectra of Minerals, p. 67, MGU, MOSCOW (1977).

    Google Scholar 

  25. V. Kundu, R. L. Dhiman, A. S. Maan, and D. R. Goyal, Adv. Condens. Mater. Phys. 25, 324 (2008).

    Google Scholar 

  26. O. Gzowski, L. Murawskit, W. Lizakf, H. Binczyckat, and J. Sawicki, J. Phys. D: Appl. Phys. 14, L77 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bongki Ryu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gwoo, D., Kim, T., Han, K. et al. Electrical properties of crystallized 30B2O3-70V2O5 glass. Electron. Mater. Lett. 9, 309–313 (2013). https://doi.org/10.1007/s13391-013-2199-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-013-2199-y

Keywords

Navigation