Skip to main content
Log in

Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: Effects of Al doping and annealing treatment

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

Zinc oxide (ZnO) and Al-doped ZnO (AZO) thin films were prepared by electrostatic spray deposition method at atmospheric pressure followed by annealing. The effects of annealing and Al doping on the structural, electrical and optical properties of the films were investigated. The results show that films have random orientation with compact hexagonal wurtzite structure. It also implies that the annealing and the Al doping help to improve the electrical conductivity and optical properties as well. The minimum value of resistivity was 1.10 × 10−4 Ω cm for 0.5 at. % AZO film and transmittance was greater than 96% in the visible region. The present value of resistivity is comparable to the lowest values for AZO films reported in open literatures. All the films prepared by this method have a good crystalline structure and homogenous surface. We proposed that the substitution of Al in the ZnO lattice has positive effects in terms of increasing the free electron concentration. At atmospheric pressure, the electrospraying method was confirmed to be suitable for the preparation of AZO films with low resistivity and high transmittance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Gao, Q. Li, and T. Wang, Chem. Mater. 17, 887 (2005).

    Article  CAS  Google Scholar 

  2. X. D. Wang, C. J. Summers, and Z. L. Wang, Nano Lett. 4, 423 (2004).

    Article  CAS  Google Scholar 

  3. Q. Li, V. Kummar, Y. Li, H. Zhang, T. J. Marks, and R. P. H. Chang, Chem. Mater. 17, 1001 (2005).

    Article  Google Scholar 

  4. K. S. Hwang, J. H. Jeong, Y. S. Jeon, K. K. Jeon, and B. H. Kim, Ceram. Int. 33, 505 (2007).

    Article  CAS  Google Scholar 

  5. A. F. Aktaruzzaman, G. L. Sharma, and L. K. Malhotra, Thin Solid Films 198, 67 (1991).

    Article  CAS  Google Scholar 

  6. S. Kohiki, M. Nishitani, and T. Wada, J. Appl. Phys. 75, 2069 (1994).

    Article  CAS  Google Scholar 

  7. R. Wang, A. W. Sleight, and D. Cleary, Chem. Mater. 8, 443 (1996).

    Google Scholar 

  8. A. Ambrosini, S. Malo, and K. Poeppelmeier, Chem. Mater. 14, 58 (2002).

    Article  CAS  Google Scholar 

  9. G. B. Palmer, K. R. Poeppelmeier, and T. O. Mason, Chem. Mater. 9, 3121 (1997).

    Article  CAS  Google Scholar 

  10. K. Mahmood, D. S. Song, and S. B. Park, Surf. Coat. Technol. 206, 4730 (2012).

    Article  CAS  Google Scholar 

  11. J. J. Robbins, J. Harvey, J. Leaf, C. Fry, and C. A. Wolden, Thin Solid Films 473, 35 (2005).

    Article  CAS  Google Scholar 

  12. F. K. Shan, B. C. Shin, S. W. Jang, and Y. S. Yu, J. Eur. Ceram. Soc. 24, 1015 (2004).

    Article  CAS  Google Scholar 

  13. F. Chaabouni, M. Abaab, and B. Rezig, Mater. Sci. Eng. B 109, 236 (2004).

    Article  Google Scholar 

  14. F. D. Paraguay, M. Miki-Yoshida, J. Morales, J. Solis, and W. L. Estrada, Thin Solid Films 373, 137 (2000).

    Article  Google Scholar 

  15. H.-W. Ryu, B.-S. Park, S. A. Akbar, W.-S. Lee, K.-J. Hong, Y. J. Seo, D.-C. Shin, J.-S. Park, and G.-P. Choi, Sens. Actuators B 96, 717 (2003).

    Article  Google Scholar 

  16. G. Sberveglieri, S. Groppelli, P. Nelli, A. Tintinelli, and G. Giunta, Sens. Actuators B 25, 588 (1995).

    Article  Google Scholar 

  17. J. Li, H. Q. Fan, X. H. Jia, J. Chen, Z. Y. Cao, and X. P. Chen, J. Alloys Compd. 481, 735 (2009).

    Article  CAS  Google Scholar 

  18. E. H. Kisi and M. Elcombe, Acta Cryst Sect C 45, 1865 (1989).

    Article  Google Scholar 

  19. R. Brenier and L. Ortega, J. Sol-gel Sci. Technol. 29, 137 (2004).

    Article  CAS  Google Scholar 

  20. X. B. Wang, C. Song, K. W. Geng, F. Zeng, and F. Pan, J. Phys. D: Appl. Phys. 39, 4992 (2006).

    Article  CAS  Google Scholar 

  21. J. Hu and R. G. Gordon, J. Appl. Phys. 72, 5281 (1992).

    Google Scholar 

  22. P. Nunes, E. Fortunato, P. Tonello, F. B. Fernandes, P. Vilarinho, and R. Martins, Vacuum 64, 281 (2002).

    Article  CAS  Google Scholar 

  23. A. El Manounia, F. J. Manjónb, M. Mollar, B. Mary b, R. Gómez, M. C. López, and J. R. Ramos-Barradod, Superlattices Microstruct. 39, 185–192 (2006).

    Article  Google Scholar 

  24. H. M. Zhou, D. Q. Yi, Z. M. Yu, L. R. Xiao, and J. Li, Thin Solid Films 515, 6909 (2007).

    Article  CAS  Google Scholar 

  25. G. Kim, J. Bang, Y. Kim, S. K. Rout, and S. I. Woo, Appl. Phys. A 97, 821 (2009).

    Article  CAS  Google Scholar 

  26. D. J. Goyal, C. H. Agashe, M. G. Takwale, V. G. Bhide, S. Mahamuni, and S. K. Kulkarni, J. Mater. Res. 8, 1052 (1993).

    Article  CAS  Google Scholar 

  27. S. H. Lee, T. S. Lee, K. S. Lee, B. Cheong, Y. D. Kim, and W. M. Kim, J. Phys. D: Appl. Phys. 41, 095303 (2008).

    Article  Google Scholar 

  28. T. Minami, Semicond. Sci. Technol. 20, S35 (2005).

    Article  CAS  Google Scholar 

  29. T. Minami, H. Nanto, and S. Takata, Jpn. J. Appl. Phys. 23, L280–(1984).

    Article  Google Scholar 

  30. T. Minami, K. Oohashi, S. Takata, T. Mouri, and N. Ogawa, Thin Solid Films 721, 193 (1990).

    Google Scholar 

  31. W. Tang and D. C. Cameron, Thin Solid Films 238, 83 (1994).

    Article  CAS  Google Scholar 

  32. A. Suzuki, T. Matsushita, N. Wada, Y. Sakamoto, and M. Okuda, Jpn. J. Appl. Phys. 35, L56 (1999).

    Article  Google Scholar 

  33. H. Kim, A. Piqu, J. S. Horwitz, H. Murata, Z. H. Kafafi, C. M. Gilmore, and D. B. Chrisey, Thin Solid Films 377–378, 798 (2000).

    Article  Google Scholar 

  34. M. J. Alam and D. C. Cameron, J. Vac. Sci. Technol. A 19, 1642 (2000).

    Article  Google Scholar 

  35. J. Ma, F. Ji, H. L. Ma, and S. Y. Li, Sol. Energ. Mat. Sol. C. 60, 341 (2000).

    Article  CAS  Google Scholar 

  36. H. Agura, A. Suzuki, T. Matsushita, T. Aoki, and M. Okuda, Thin Solid Films 445, 263 (2003).

    Article  CAS  Google Scholar 

  37. J. H. Lee and B. O. Park, Mat. Sci. Eng. B 106, 242 (2004).

    Article  Google Scholar 

  38. S. M. Park, T. Ikegami, and K. Ebihara, Jpn. J. Appl. Phys. 45, 8453 (2006).

    Article  CAS  Google Scholar 

  39. B. Joseph, P. K. Manoj, and V. K. Vaidyan, Ceram. Int. 32, 487 (2006).

    Article  CAS  Google Scholar 

  40. A. El. Manouni, F. J. Manjón, M. Perales, M. Mollar, B. Mar, M. C. Lopez, and J. R. Ramos Barrado, Superlattices Microstruct. 42, 134 (2007).

    Article  Google Scholar 

  41. S. M. Kim, Y. S. Rim, M. J. Keum, and K. H. Kim, J. Electroceram. 23, 341 (2009).

    Article  CAS  Google Scholar 

  42. S. T. Hwang and C. B. Park, Trans. Electr. Electron. Mater. 11, 81 (2010).

    Article  Google Scholar 

  43. P. Banerjee, W. J. Lee, K. R. Bae, S. B. Lee, and G. W. Rubloff, J. Appl. Phys. 108, 043504 (2010).

    Article  Google Scholar 

  44. Y. P. Wang, J. G. Lu, X. Bie, L. Gong, X. Li, D. Song, X. Y. Zhao, W. Y. Ye, and Z. Z. Ye, J. Vac. Sci. Technol. A 29, 031505 (2011).

    Article  Google Scholar 

  45. L. Gao, Y. Zhang, J. M. Zhang, and K. W. Xu, Appl. Surf. Sci. 257, 2498 (2011).

    Article  CAS  Google Scholar 

  46. H. Ishizaki, M. Imaizumi, S. Matsuda, M. Izaki, and T. Ito, Thin Solid Films 411, 65 (2002).

    Article  CAS  Google Scholar 

  47. K. L. Chopra, S. Major, and D. K. Pandya, Thin Solid Films 102, 1 (1983).

    Article  CAS  Google Scholar 

  48. J. W. Orton and M. J. Powell, Rep. Prog. Phys. 43, 1263 (1980).

    Article  Google Scholar 

  49. K. Ellmer, J. Phys. D: Appl. Phys. 34, 3097 (2001).

    Article  CAS  Google Scholar 

  50. X. L. Chen, B. H. Xu, J. M. Xue, Y. Zhang, C. C. Wei, J. Sun, Y. Wang, X. D. Zhang, and X. H. Geng, Thin Solid Films 515, 3753 (2007).

    Article  CAS  Google Scholar 

  51. J. Steinhauser, S. Faÿ, N. Oliveira, E. Vallat-Sauvain, and C. Ballif, Appl. Phys. Lett. 90, 142107 (2007).

    Article  Google Scholar 

  52. B. Joseph, P. K. Manoj, and V. K. Vaidyan, Ceram. Int. 32, 487 (2006).

    Article  CAS  Google Scholar 

  53. J. G. Lu, Z. Z. Ye, Y. J. Zeng, L. P. Zhu, L. Wang, J. Yuan, B. H. Zhao, and Q. L. Liang, J. Appl. Phys. 100, 073714 (2006).

    Article  Google Scholar 

  54. A. D. Trolio, E. M. Bauer, G. Scavia, and C. Veroli, J. Appl. Phys. 105, 113109 (2009).

    Article  Google Scholar 

  55. S. M. Park, T. Ikegami, and K. Ebihara, Thin Solid Films 513, 90 (2006).

    Article  CAS  Google Scholar 

  56. S. Kim, S. M. Kim, G. Nam, and J.-Y. Leem, Electron. Mater. Lett. 8, 447 (2012).

    Google Scholar 

  57. G. M. Nam and M. S. Kwon, Electron. Mater. Lett. 7, 127 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung Bin Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, K., Park, S.B. Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: Effects of Al doping and annealing treatment. Electron. Mater. Lett. 9, 161–170 (2013). https://doi.org/10.1007/s13391-012-2188-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2188-6

Keywords

Navigation