Skip to main content
Log in

Characterization of the p-type Sn1−x Mn x O2 oxide semiconductor nanoparticles by Sol-Gel method

  • Published:
Electronic Materials Letters Aims and scope Submit manuscript

Abstract

This paper reports the properties of p-type oxide semiconductor Sn1−x Mn x O2 (MTO) nanoparticles with a low doping concentration of Mn (0 ≤ x ≤ 0.05) prepared with a sol-gel method. X-ray diffraction (XRD) results show that single-phase rutile MTO was obtained for x up to 0.03. The samples have particle average size of about 100 nm, which was confirmed with scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). The compositional changes and electrical properties of the MTO nanoparticles were characterized by using x-ray photoelectron spectroscopy (XPS) and Hall effect measurements. Mn3+ cations are incorporated into the rutile SnO2 lattice. P-type conduction which is arisen from the substitution of Mn3+ to Sn4+ lattice was demonstrate by Hall data. These compositions have hole carrier concentrations in the range 2.26∼8.53 × 1016 cm−3 and exhibit Hall mobilities in the range 0.8∼4.1 cm2/Vs. The mobility of MTO decreases as the Mn content increases due to the doping effect. A transparent, ptype TFT device can be fabricated with this composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Chaudhary, I. S. Mulla, K. Vijayamohanan, S. G. Hegde, and D. J. Srinivas, J. Phys. Chem. B 105, 2565 (2001).

    Article  CAS  Google Scholar 

  2. D. Kotsikau, M. Ivanovskaya, D. Orlik, and M. Falasconi, Sensor Actuat. B-Chem. 101, 199 (2004).

    Article  CAS  Google Scholar 

  3. T. Hayakawa and M. Nogami, Sci. Technol. Adv. Mat. 6, 66 (2005).

    Article  CAS  Google Scholar 

  4. S. Ferrere, A. Zaban, and B. A. Gsegg, J. Phys. Chem. B 101, 4490 (1997).

    Article  CAS  Google Scholar 

  5. V. Subramanian, K. I. Gnanasekar, and B. Rambabu, Solid State Ionics 175, 181 (2004).

    Article  CAS  Google Scholar 

  6. S. R. Stampfl, Y. Chen, J. A. Dumesis, Ch. Niu, and C. G. Hill, J. Catal. 105, 445 (1987).

    Article  CAS  Google Scholar 

  7. J. Y. Kwon, D. J. Lee, and K. B. Kim, Electron. Mater. Lett. 7, 1 (2011).

    Article  CAS  Google Scholar 

  8. O’Mara and C. William, Liquid Crystal Flat Panel Display: Manufacturing Science and Technology, Van Nostrand Reinhold (1993).

    Book  Google Scholar 

  9. C. H. Lee, B. A. Nam, W. K. Choi, J. K. Lee, D. J. Choi, and Y. J. Oh, Mater. Lett. 65, 722 (2011).

    Article  CAS  Google Scholar 

  10. Y. Xiao, S. Ge, L. Xi, Y. Zuo, X. Zhou, B. Zhang, L. Zhang, C. Li, X. Han, and Z. Wen, Appl. Surf. Sci. 254, 7459 (2008).

    Article  CAS  Google Scholar 

  11. B. Sathyaseelan, K. Senthilnathan, T. Alagesan, R. Jayavel, and K. Sivakumar, Mater. Chem. Phys. 124, 1046 (2010).

    Article  CAS  Google Scholar 

  12. S. Saravanakumar, M. Pattammal, S. Israel, R. A. J. R. Sheeba, and R. Saravanan, Physica B: Condensed Matter 407, 302 (2012).

    Article  CAS  Google Scholar 

  13. A. F. Lamrani, M. Belaiche, A. Benyoussef, A. E. Kenz, and E. H. Saidi, J. Magn. Magn. Mater. 323, 2982 (2011).

    Article  Google Scholar 

  14. A. C. Bose, P. Thangadurai, and S. Ramasamy, Mater. Chem. Phys. 95, 72 (2006).

    Article  CAS  Google Scholar 

  15. M. Mehdi, B. Mohagheghi, and M. S. Saremi, J. Appl. Phys. 37, 1248 (2004).

    Google Scholar 

  16. M. Mehdi, B. Mohagheghi, and M. S. Saremi, Semicond. Sci. Tech. 19, 764 (2004).

    Article  Google Scholar 

  17. Z. Ji, Z. He, Y. Song, K. Liu, and Z. Ye, J. Cryst. Growth 259, 282 (2003).

    Article  CAS  Google Scholar 

  18. D. J. Kong, H. Deng, P. Yang, and J. Chu, Mater. Chem. Phys. 114, 854 (2009).

    Article  CAS  Google Scholar 

  19. S. S. Chee and J. H. Lee, Electron. Mater. Lett. 8, 587 (2012).

    Article  CAS  Google Scholar 

  20. D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma, B. Varughese, K. V. Ramanujachary, L. Salamanca-Riba, and T. Venkatesan, Nat. Mater. 3, 709 (2004).

    Article  CAS  Google Scholar 

  21. W. K. Choi, H. Jin Jung, and S. K. Koh, J. Vac. Sci. Technol. A 14, 359 (1996).

    Article  CAS  Google Scholar 

  22. M. K. Yang, J. W. Park, T. K. Ko, and J. K. Lee, Appl. Phys. Lett. 95, 042105 (2009).

    Article  Google Scholar 

  23. H. W. Nesbitt and D. Banerjee, Am. Mineral. 83, 305 (1998).

    CAS  Google Scholar 

  24. L. Romano, A. M. Piro, M. G. Grimaldi, G. Bisognin, E. Napolitani, and D. De Salvador, Phys. Rev. Lett. 97, 136605 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Jei Oh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CH., Choi, DJ. & Oh, YJ. Characterization of the p-type Sn1−x Mn x O2 oxide semiconductor nanoparticles by Sol-Gel method. Electron. Mater. Lett. 9, 283–286 (2013). https://doi.org/10.1007/s13391-012-2140-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13391-012-2140-9

Keywords

Navigation