Skip to main content
Log in

Leakage assessment methodology

Extended version

  • CHES 2015
  • Published:
Journal of Cryptographic Engineering Aims and scope Submit manuscript

Abstract

Evoked by the increasing need to integrate side-channel countermeasures into security-enabled commercial devices, evaluation labs are seeking a standard approach that enables a fast, reliable and robust evaluation of the side-channel vulnerability of the given products. To this end, standardization bodies such as NIST intend to establish a leakage assessment methodology fulfilling these demands. One of such proposals is the Welch’s t test, which is being put forward by Cryptography Research Inc. and is able to relax the dependency between the evaluations and the device’s underlying architecture. In this work, we deeply study the theoretical background of the test’s different flavors and present a roadmap which can be followed by the evaluation labs to efficiently and correctly conduct the tests. More precisely, we express a stable, robust and efficient way to perform the tests at higher orders. Further, we extend the test to multivariate settings and provide details on how to efficiently and rapidly carry out such a multivariate higher-order test. Including a suggested methodology to collect the traces for these tests, we point out practical case studies where different types of t tests can exhibit the leakage of supposedly secure designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. For example an AES encryption engine in counter mode.

References

  1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/SAKURA/index.html. Accessed 10 Feb 2016

  2. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.: On the Cost of Lazy Engineering for Masked Software Implementations. In: Smart Card Research and Advanced Applications - CARDIS 2014, volume 8968 of Lecture Notes in Computer Science, pp. 64–81 (2014)

  3. Bhasin, S., Bruneau, N., Danger, J., Guilley, S., Najm, Z.: Analysis and Improvements of the DPA Contest v4 Implementation. In: Security, Privacy, and Applied Cryptography Engineering—4th International Conference, SPACE 2014, volume 8804 of Lecture Notes in Computer Science, pp. 201–218. Springer (2014)

  4. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A More Efficient AES Threshold Implementation. In: Progress in Cryptology - AFRICACRYPT 2014, volume 8469 of Lecture Notes in Computer Science, pp. 267–284. Springer (2014)

  5. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-Order Threshold Implementations. In: Advances in Cryptology—ASIACRYPT 2014, Part II, volume 8874 of Lecture Notes in Computer Science, pp. 326–343. Springer (2014)

  6. Brier, E., Clavier, C., Olivier, F.: Correlation Power Analysis with a Leakage Model. In: Cryptographic Hardware and Embedded Systems—CHES 2004, volume 3156 of Lecture Notes in Computer Science, pp. 16–29. Springer (2004)

  7. Chatzikokolakis, K., Chothia, T., Guha, A.: Statistical Measurement of Information Leakage. In: Tools and Algorithms for the Construction and Analysis of Systems—TACAS 2010, volume 6015 of Lecture Notes in Computer Science, pp. 390–404. Springer (2010)

  8. Chothia, T., Guha, A.: A Statistical Test for Information Leaks Using Continuous Mutual Information. In: IEEE Computer Security Foundations Symposium—CSF 2011, pp. 177–190. IEEE Computer Society (2011)

  9. Cooper, J., Demulder, E., Goodwill, G., Jaffe, J., Kenworthy, G., Rohatgi, P.: Test Vector Leakage Assessment (TVLA) Methodology in Practice. International Cryptographic Module Conference (2013). http://icmc-2013.org/wp/wp-content/uploads/2013/09/goodwillkenworthtestvector.pdf

  10. Durvaux, F., Standaert, F.-X., Veyrat-Charvillon, N., Mairy, J.-B., Deville, Y.: Efficient Selection of Time Samples for Higher-Order DPA with Projection Pursuits. In: Constructive Side-Channel Analysis and Secure Design—COSADE 2015, volume 9064 of Lecture Notes in Computer Science. Springer (2015)

  11. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual Information Analysis. In: Cryptographic Hardware and Embedded Systems—CHES 2008, volume 5154 of Lecture Notes in Computer Science, pp. 426–442. Springer (2008)

  12. Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodology for side channel resistance validation. In: NIST non-invasive attack testing workshop (2011). http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

  13. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA (2002). ISBN: 0898715210

  14. Kizhvatov, I., Witteman, M.: Academic vs. industrial perspective on SCA, and an industrial innovation. Short talk at COSADE 2013

  15. Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: Advances in Cryptology—CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pp. 388–397. Springer (1999)

  16. Leiserson, A.J., Marson, M.E., Wachs, M.A.: Gate-Level Masking under a Path-Based Leakage Metric. In: Cryptographic Hardware and Embedded Systems—CHES 2014, volume 8731 of Lecture Notes in Computer Science, pp. 580–597. Springer (2014)

  17. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does My Device Leak Information? An a priori Statistical Power Analysis of Leakage Detection Tests. In: Advances in Cryptology—ASIACRYPT 2013, Part I, volume 8269 of Lecture Notes in Computer Science, pp. 486–505. Springer (2013)

  18. Moradi, A.: Statistical Tools Flavor Side-Channel Collision Attacks. In: Advances in Cryptology–EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pp. 428–445. Springer (2012)

  19. Moradi, A.: Side-Channel Leakage through Static Power—Should We Care about in Practice? In: Cryptographic Hardware and Embedded Systems—CHES 2014, volume 8731 of Lecture Notes in Computer Science, pp. 562–579. Springer (2014)

  20. Moradi, A., Guilley, S., Heuser, A.: Detecting Hidden Leakages. In: Applied Cryptography and Network Security Conference, ACNS 2014, volume 8479 of Lecture Notes in Computer Science, pp. 324–342. Springer (2014)

  21. Moradi, A., Hinterwaelder, G.: Side-Channel Security Analysis of Ultra-Low-Power FRAM-based MCUs. In: Constructive Side-Channel Analysis and Secure Design—COSADE 2015, volume 9064 of Lecture Notes in Computer Science. Springer (2015)

  22. Moradi, A., Mischke, O.: How Far Should Theory Be from Practice? - Evaluation of a Countermeasure. In: Cryptographic Hardware and Embedded Systems—CHES 2012, volume 7428 of Lecture Notes in Computer Science, pp. 92–106. Springer (2012)

  23. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A Very Compact and a Threshold Implementation of AES. In: Advances in Cryptology—EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pp. 69–88. Springer (2011)

  24. Nassar, M., Souissi, Y., Guilley, S., Danger, J.: RSM: A small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset SCAs. In: Design, Automation and Test in Europe Conference, DATE 2012, pp. 1173–1178. IEEE (2012)

  25. Nikova, S., Rijmen, V., Schläffer, M.: Secure Hardware Implementation of Nonlinear Functions in the Presence of Glitches. J. Cryptol. 24(2), 292–321 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pébay, P.: Formulas for Robust, One-Pass Parallel Computation of Covariances and Arbitrary-Order Statistical Moments. Sandia Report SAND2008-6212, Sandia National Laboratories (2008)

  27. Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-Channel Resistant Crypto for Less than 2,300 GE. J. Cryptol. 24(2), 322–345 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential Power Analysis. IEEE Trans. Comput. 58(6), 799–811 (2009)

    Article  MathSciNet  Google Scholar 

  29. Reparaz, O.: A note on the security of Higher-Order Threshold Implementations. Cryptology ePrint Archive, Report 2015/001 (2015) http://eprint.iacr.org/

  30. Reparaz, O., Gierlichs, B., Verbauwhede, I.: Selecting Time Samples for Multivariate DPA Attacks. In: Cryptographic Hardware and Embedded Systems—CHES 2012, volume 7428 of Lecture Notes in Computer Science, pp. 155–174. Springer (2012)

  31. Sasdrich, P., Mischke, O., Moradi, A., Güneysu, T.: Side-Channel Protection by Randomizing Look-Up Tables on Reconfigurable Hardware. In: Constructive Side-Channel Analysis and Secure Design—COSADE 2015, volume 9064 of Lecture Notes in Computer Science. Springer (2015)

  32. Sasdrich, P., Moradi, A., Mischke, O., Güneysu, T.: Achieving Side-Channel Protection with Dynamic Logic Reconfiguration on Modern FPGAs. In: Symposium on Hardware-Oriented Security and Trust—HOST 2015, pp. 130–136. IEEE (2015)

  33. Schneider, T., Moradi, A., Güneysu, T.: Arithmetic Addition over Boolean Masking—Towards First- and Second-Order Resistance in Hardware. In: Applied Cryptography and Network Security—ACNS 2015, Lecture Notes in Computer Science, pp. 517–536. Springer (2015)

  34. Standaert, F., Veyrat-Charvillon, N., Oswald, E., Gierlichs, B., Medwed, M., Kasper, M., Mangard, S.: The World Is Not Enough: Another Look on Second-Order DPA. In: Advances in Cryptology—ASIACRYPT 2010, volume 6477 of Lecture Notes in Computer Science, pp. 112–129. Springer (2010)

  35. TELECOM ParisTech. DPA Contest (\(4^\text{ th }\) edition), 2013–2015. http://www.DPAcontest.org/v4/

  36. Wild, A., Moradi, A., Güneysu, T.: Evaluating the Duplication of Dual-Rail Precharge Logics on FPGAs. In: Constructive Side-Channel Analysis and Secure Design—COSADE 2015, volume 9064 of Lecture Notes in Computer Science. Springer (2015)

Download references

Acknowledgments

The research in this work was supported in part by the DFG Research Training Group GRK 1817/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Schneider.

Appendices

Appendix 1: Necessary moments for up to 5th-order t tests

Below we consider \(\Delta =y-M_{1,\mathcal {Q}}\), where \(M_{1,\mathcal {Q}}\) denotes the first raw moment of \(\mathcal {Q}\), and y as the new element to construct \(\mathcal {Q}'=\mathcal {Q} \cup \{y\}\) with cardinality of n.

1.1 Central moments iterative

$$\begin{aligned} CS_{2,\mathcal {Q}'} =~&CS_{2,\mathcal {Q}} + \frac{\Delta ^2(n-1)}{n} \end{aligned}$$
(19)
$$\begin{aligned} CS_{3,\mathcal {Q}'} =~&CS_{3,\mathcal {Q}} - \frac{3\Delta }{n}CS_{2,\mathcal {Q}} \nonumber \\&+ \frac{\Delta ^3(n-1)((n-1)^2-1)}{n^3} \end{aligned}$$
(20)
$$\begin{aligned} CS_{4,\mathcal {Q}'} =~&CS_{4,\mathcal {Q}} - \frac{4\Delta }{n}CS_{3,\mathcal {Q}} + \frac{6\Delta ^2}{n^2}CS_{2,\mathcal {Q}}\nonumber \\&+ \frac{\Delta ^4(n-1)((n-1)^3+1)}{n^4} \end{aligned}$$
(21)
$$\begin{aligned} CS_{5,\mathcal {Q}'} =~&CS_{5,\mathcal {Q}} - \frac{5\Delta }{n}CS_{4,\mathcal {Q}}\nonumber \\&+ \frac{10\Delta ^2}{n^2}CS_{3,\mathcal {Q}} - \frac{10\Delta ^3}{n^3}CS_{2,\mathcal {Q}} \nonumber \\&+ \frac{\Delta ^5(n-1)((n-1)^4-1)}{n^5} \end{aligned}$$
(22)
$$\begin{aligned} CS_{6,\mathcal {Q}'} =~&CS_{6,\mathcal {Q}} - \frac{6\Delta }{n}CS_{5,\mathcal {Q}}\nonumber \\&+ \frac{15\Delta ^2}{n^2}CS_{4,\mathcal {Q}} - \frac{20\Delta ^3}{n^3}CS_{3,\mathcal {Q}} \nonumber \\&+ \frac{15\Delta ^4}{n^4}CS_{2,\mathcal {Q}} + \frac{\Delta ^6(n-1)((n-1)^5+1)}{n^6} \end{aligned}$$
(23)
$$\begin{aligned} CS_{7,\mathcal {Q}'} =~&CS_{7,\mathcal {Q}} - \frac{7\Delta }{n}CS_{6,\mathcal {Q}} \nonumber \\&+ \frac{21\Delta ^2}{n^2}CS_{5,\mathcal {Q}} - \frac{35\Delta ^3}{n^3}CS_{4,\mathcal {Q}} \nonumber \\&+ \frac{35\Delta ^4}{n^4}CS_{3,\mathcal {Q}} - \frac{21\Delta ^5}{n^5}CS_{2,\mathcal {Q}}\nonumber \\&+ \frac{\Delta ^7(n-1)((n-1)^6-1)}{n^7} \end{aligned}$$
(24)
$$\begin{aligned} CS_{8,\mathcal {Q}'} =~&CS_{8,\mathcal {Q}} - \frac{8\Delta }{n}CS_{7,\mathcal {Q}} + \frac{28\Delta ^2}{n^2}CS_{6,\mathcal {Q}}\nonumber \\&- \frac{56\Delta ^3}{n^3}CS_{5,\mathcal {Q}} + \frac{70\Delta ^4}{n^4}CS_{4,\mathcal {Q}}\nonumber \\&- \frac{56\Delta ^5}{n^5}CS_{3,\mathcal {Q}} + \frac{28\Delta ^6}{n^6}CS_{2,\mathcal {Q}} \nonumber \\&+ \frac{\Delta ^8(n-1)((n-1)^7+1)}{n^8} \end{aligned}$$
(25)
$$\begin{aligned} CS_{9,\mathcal {Q}'} =~&CS_{9,\mathcal {Q}} - \frac{9\Delta }{n}CS_{8,\mathcal {Q}} + \frac{36\Delta ^2}{n^2}CS_{7,\mathcal {Q}} \nonumber \\&- \frac{84\Delta ^3}{n^3}CS_{6,\mathcal {Q}} + \frac{126\Delta ^4}{n^4}CS_{5,\mathcal {Q}} \nonumber \\&- \frac{126\Delta ^5}{n^5}CS_{4,\mathcal {Q}} + \frac{84\Delta ^6}{n^6}CS_{3,\mathcal {Q}} \nonumber \\&- \frac{36\Delta ^7}{n^7}CS_{2,\mathcal {Q}} + \frac{\Delta ^9(n-1)((n-1)^8-1)}{n^9} \end{aligned}$$
(26)
$$\begin{aligned} CS_{10,\mathcal {Q}'}=~&CS_{10,\mathcal {Q}} - \frac{10\Delta }{n}CS_{9,\mathcal {Q}} + \frac{45\Delta ^2}{n^2}CS_{8,\mathcal {Q}}\nonumber \\&- \frac{120\Delta ^3}{n^3}CS_{7,\mathcal {Q}} + \frac{210\Delta ^4}{n^4}CS_{6,\mathcal {Q}}\nonumber \\&- \frac{252\Delta ^5}{n^5}CS_{5,\mathcal {Q}} + \frac{210\Delta ^6}{n^6}CS_{4,\mathcal {Q}} \nonumber \\&- \frac{120\Delta ^7}{n^7}CS_{3,\mathcal {Q}}+ \frac{45\Delta ^8}{n^8}CS_{2,\mathcal {Q}} \nonumber \\&+ \frac{\Delta ^{10}(n-1)((n-1)^9+1)}{n^{10}} \end{aligned}$$
(27)

At any time, central moments can be computed as \(CM_{d}=\displaystyle {\frac{CS_{d}}{n}}\). Note that if a single variable is used for \(CS_{p,\mathcal {Q}'}\) and \(CS_{p,\mathcal {Q}}\) in the underlying computer-executable code, the order of executions should be backwards from Eqs. 27 to 19.

1.2 Central moments from the raw moments

$$\begin{aligned} CM_2 =~&M_2 - {M_1}^2 \end{aligned}$$
(28)
$$\begin{aligned} CM_3 =~&M_3 - 3\,M_2\,M_1 + 2\,{M_1}^3 \end{aligned}$$
(29)
$$\begin{aligned} CM_4 =~&M_4 - 4\,M_3\,M_1 + 6\,M_2\,{M_1}^2 - 3\,{M_1}^4 \end{aligned}$$
(30)
$$\begin{aligned} CM_5 =~&M_5 - 5\,M_4\,M_1 + 10\,M_3\,{M_1}^2 - 10\,M_2\,{M_1}^3\nonumber \\&+ 4\,{M_1}^5 \end{aligned}$$
(31)
$$\begin{aligned} CM_6 =~&M_6 - 6\,M_5\,M_1 + 15\,M_4\,{M_1}^2 - 20\,M_3\,{M_1}^3\nonumber \\&+ 15\,M_2\,{M_1}^4 - 5\,{M_1}^6 \end{aligned}$$
(32)
$$\begin{aligned} CM_7 =~&M_7 - 7\,M_6\,M_1 + 21\,M_5\,{M_1}^2 - 35\,M_4\,{M_1}^3\nonumber \\&+ 35\,M_3\,{M_1}^4 - 21\,M_2\,{M_1}^5 + 6\,{M_1}^7 \end{aligned}$$
(33)
$$\begin{aligned} CM_8 =~&M_8 - 8\,M_7\,M_1 + 28\,M_6\,{M_1}^2 - 56\,M_5\,{M_1}^3\nonumber \\&+ 70\,M_4\,{M_1}^4 - 56\,M_3\,{M_1}^5 + 28\,M_2\,{M_1}^6\nonumber \\&- 7\,{M_1}^8 \end{aligned}$$
(34)
$$\begin{aligned} CM_9 =~&M_9 - 9\,M_8\,M_1 + 36\,M_7\,{M_1}^2 - 84\,M_6\,{M_1}^3\nonumber \\&+ 126\,M_5\,{M_1}^4 - 126\,M_4\,{M_1}^5 + 84\,M_3\,{M_1}^6\nonumber \\&- 36\,M_2\,{M_1}^7 + 8\,{M_1}^9 \end{aligned}$$
(35)
$$\begin{aligned} CM_{10} =~&M_{10} - 10\,M_9\,M_1 + 45\,M_8\,{M_1}^2 - 120\,M_7\,{M_1}^3\nonumber \\&+ 210\,M_6\,{M_1}^4 - 252\,M_5\,{M_1}^5 + 210\,M_4\,{M_1}^6\nonumber \\&- 120\,M_3\,{M_1}^7 + 45\,M_2\,{M_1}^8 - 9\,{M_1}^{10} \end{aligned}$$
(36)

1.3 Mean and variance for each t test

$$\begin{aligned}&\mathrm {(1st~order)}~~~\mu =~ M_1,&\quad s^2 =~&CM_2 \end{aligned}$$
(37)
$$\begin{aligned}&\mathrm {(2nd~order)}~~~\mu =~ CM_2,&\quad s^2 =~&CM_4 - {CM_2}^2 \end{aligned}$$
(38)
$$\begin{aligned}&\mathrm {(3rd~order)}~~~\mu =~ SM_3=\frac{CM_{3}}{\big (\sqrt{CM_2}\big )^3},&\quad s^2 =~&\frac{CM_6 - {CM_3}^2}{{CM_2}^3}\nonumber \\ \end{aligned}$$
(39)
$$\begin{aligned}&\mathrm {(4th~order)}~~~\mu =~ SM_4=\frac{CM_{4}}{\big (\sqrt{CM_2}\big )^4},&\quad s^2 =~&\frac{CM_8 - {CM_4}^2}{{CM_2}^4}\nonumber \\ \end{aligned}$$
(40)
$$\begin{aligned}&\mathrm {(5th~order)}~~~\mu =~ SM_5=\frac{CM_{5}}{\big (\sqrt{CM_2}\big )^5},&\quad s^2 =~&\frac{CM_{10} - {CM_5}^2}{{CM_2}^5}\nonumber \\ \end{aligned}$$
(41)

Appendix 2: Necessary formulas for a bivariate second-order t tests

In the following we give the necessary formulas to compute a bivariate second-order t test for exemplary sample points \(\mathcal {J} = \{1,2\}\). We denote the two sample points of the new trace by tuple \((y^{(1)} , y^{(2)})\) to be added to the trace set as \(\mathcal {Q}' = \mathcal {Q}\cup \{(y^{(1)} , y^{(2)})\}\) with cardinality of n. We also consider \(\Delta ^{(j\in \mathcal {J})} = y^{(j)} - \mu _{\mathcal {Q}}^{(j)}\), with \(\mu _{\mathcal {Q}}^{(j)}\) as the mean of the set \(\mathcal {Q}\) at sample point j.

$$\begin{aligned} C_{2,\mathcal {Q}',\{1,1\}} =~&C_{2,\mathcal {Q},\{1,1\}} + \frac{\Delta ^{(1)}\Delta ^{(1)}(n-1)}{n} \end{aligned}$$
(42)
$$\begin{aligned} C_{2,\mathcal {Q}',\{1,2\}} =~&C_{2,\mathcal {Q},\{1,2\}} + \frac{\Delta ^{(1)}\Delta ^{(2)}(n-1)}{n} \end{aligned}$$
(43)
$$\begin{aligned} C_{2,\mathcal {Q}',\{2,2\}} =~&C_{2,\mathcal {Q},\{2,2\}} + \frac{\Delta ^{(2)}\Delta ^{(2)}(n-1)}{n} \end{aligned}$$
(44)
$$\begin{aligned} C_{3,\mathcal {Q}',\{1,2,1\}} =~&C_{3,\mathcal {Q},\{1,2,1\}} - 2\,C_{2,\mathcal {Q},\{1,2\}}\frac{\Delta ^{(1)}}{n}\nonumber \\&- C_{2,\mathcal {Q},\{1,1\}}\frac{\Delta ^{(2)}}{n}\nonumber \\&+ \frac{\Delta ^{(1)}\Delta ^{(2)}\Delta ^{(1)}\left( n^2 - 3n + 2\right) }{n^2} \end{aligned}$$
(45)
$$\begin{aligned} C_{3,\mathcal {Q}',\{1,2,2\}} =~&C_{3,\mathcal {Q},\{1,2,2\}} - 2\,C_{2,\mathcal {Q},\{1,2\}}\frac{\Delta ^{(2)}}{n}\nonumber \\&- C_{2,\mathcal {Q},\{2,2\}}\frac{\Delta ^{(1)}}{n}\nonumber \\&+ \frac{\Delta ^{(1)}\Delta ^{(2)}\Delta ^{(2)}\left( n^2 - 3n + 2\right) }{n^2} \end{aligned}$$
(46)
$$\begin{aligned} C_{4,\mathcal {Q}',\{1,2,1,2\}}&= C_{4,\mathcal {Q},\{1,2,1,2\}} - 2\,C_{3,\mathcal {Q},\{1,2,1\}}\frac{\Delta ^{(2)}}{n}\nonumber \\&\quad - 2\,C_{3,\mathcal {Q},\{1,2,2\}}\frac{\Delta ^{(1)}}{n} + C_{2,\mathcal {Q},\{1,1\}}\frac{\Delta ^{(2)}\Delta ^{(2)}}{n^2}\nonumber \\&\quad + 4\,C_{2,\mathcal {Q},\{1,2\}}\frac{\Delta ^{(1)}\Delta ^{(2)}}{n^2}\nonumber \\&\quad + C_{2,\mathcal {Q},\{2,2\}}\frac{\Delta ^{(1)}\Delta ^{(1)}}{n^2}\nonumber \\&\quad + \frac{\Delta ^{(1)}\Delta ^{(2)}\Delta ^{(1)}\Delta ^{(2)}\left( n^3 - 4n^2 + 6n - 3\right) }{n^3} \end{aligned}$$
(47)

In this scenario, \(\mu = \displaystyle {\frac{C_{2,\mathcal {Q}',\{1,2\}}}{n}}\) corresponds to the first parameter and \(s^2~=~\displaystyle {\frac{C_{4,\mathcal {Q}',\{1,2,1,2\}}}{n}}-\mu ^2\) to the second parameter of a bivariate second-order t test.

Appendix 3: Pseudo-code of the protected AES (DPA contest v4.2)

See Fig. 5.

figure a

Appendix 4: NLFSR

Fig. 5
figure 5

Architecture of the second-order TI of the NLFSR

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, T., Moradi, A. Leakage assessment methodology. J Cryptogr Eng 6, 85–99 (2016). https://doi.org/10.1007/s13389-016-0120-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13389-016-0120-y

Keywords

Navigation