Skip to main content
Log in

Scaling efficient code-based cryptosystems for embedded platforms

Journal of Cryptographic Engineering Aims and scope Submit manuscript

Abstract

We describe a family of efficient codes for cryptographic purposes and dedicated algorithms for their manipulation. Our proposal is especially tailored for highly constrained platforms, becoming competitive with conventional schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Aranha D.F., Gouvêa, C.P.L.: RELIC is an Efficient LIbrary for Cryptography. http://code.google.com/p/relic-toolkit/

  2. Aysal, T.C., Barner, K.E.: Sensor data cryptography in wireless sensor networks. IEEE Trans. Inf. Forensics Secur. 3(2), 273–289 (2008)

    Article  Google Scholar 

  3. Baldi, M., Bianchi, M., Chiaraluce, F.: Security and complexity of the McEliece cryptosystem based on QC-LDPC codes. IET Inf. Secur. 7(3), 212–220 (2013)

    Google Scholar 

  4. Baldi, M., Bodrato, M., Chiaraluce, F.: A new analysis of the McEliece cryptosystem based on QC-LDPC codes. In: International Conference on Security and Cryptography for Networks-SCN 2008, pp. 246–262. Springer, Berlin (2008)

  5. Baldi, M., Chiaraluce, F.: Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. IEEE Int. Symp. Inf. Theory 2007, 2591–2595 (2007)

  6. Baldi, M., Chiaraluce, F., Garello, R.: On the usage of quasi-cyclic low-density parity-check codes in the McEliece cryptosystem. Proc. First Int. Conf. Commun. Electron. 2006, 305–310 (2006)

  7. Baldi, M., Chiaraluce, F., Garello, R., Mininni, F.: Quasi-cyclic low-density parity-check codes in the McEliece cryptosystem. IEEE Int. Conf. Commun. 2007, 951–956 (2007)

  8. Bernstein, D.J., Buchmann, J., Dahmen. E.: Post-Quantum Cryptography. Springer, Berlin (2008)

  9. Bernstein, D.J., Lange, T., Peters. C.: Attacking and defending the McEliece cryptosystem. In: Post-Quantum Cryptography Workshop-PQCrypto 2008, volume 5299 of Lecture Notes in Computer Science, pp. 31–46. Springer, Berlin (2008). http://www.springerlink.com/content/68v69185x478p53g

  10. Bernstein, D.J., Lange, T., Peters. C.: Smaller decoding exponents: Ball-collision decoding. In: Phillip, R. (ed.) Advances in Cryptology-CRYPTO 2011, volume 6841 of Lecture Notes in Computer Science, pp. 743–760. Springer, Berlin (2011). doi:10.1007/978-3-642-22792-942

  11. Canteaut, A., Sendrier, N.: Cryptoanalysis of the original mceliece cryptosystem. In: Advances in Cryptology-Asiacrypt 1998, volume 1514 of Lecture Notes in Computer Science, Gold Coast, Australia, pp. 187–199. Springer, Berlin (1998)

  12. Chang, C.-Y., Su, Yu.T., Chen, Y.-L, Liu, Y.-C.: Check reliability based bit-flipping decoding algorithms for LDPC codes (2010). arXiv:1001.2503

  13. Chen, L., Xu, J., Djurdjevic, I.: Near-shannon-limit quasicyclic low-density parity-check codes. IEEE Trans. Commun. 52, 1038–1042 (2004)

    Google Scholar 

  14. Cho, J., Kim, J., Ji, H., Sung. W.: VLSI implementation of a soft bit-flipping decoder for PG-LDPC codes. In: IEEE International Symposium on Circuits and Systems–ISCAS 2009. pp. 908–911, IEEE, Taipei (2009)

  15. Cho, J., Kim, J., Sung, W.: VLSI implementation of a high-throughput soft-bit-flipping decoder for geometric LDPC codes. IEEE Trans. Circuits Syst. 57(5), 1083–1094 (2010)

    Article  MathSciNet  Google Scholar 

  16. Cho, J., Sung, W.: Adaptive threshold technique for bit-flipping decoding of low-density parity-check codes. IEEE Commun. Lett. 14(9), 857–859 (2010)

    Article  Google Scholar 

  17. Eisenbarth, T., Güneysu, T., Heyse, S., Paar, C.: Micro-Eliece: McEliece for embedded devices. In: International Conference on Cryptographic Hardware and Embedded Systems–CHES 2009, volume 5747 of Lecture Notes in Computer Science, pp. 49–64, Springer, Berlin (2009)

  18. Engelbert, D., Overbeck, R., Schmidt, A.: A summary of McEliece-type cryptosystems and their security. J. Math. Cryptol. 1, 151–199 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Faugère, J.-C., Otmani, A., Perret, L., Tilllich. J.-P.: Algebraic cryptanalysis of McEliece variants with compact keys. In: Advances in Cryptology-Eurocrypt 2010, volume 6110 of Lecture Notes in Computer Science, pp. 279–298. Springer, Berlin (2010)

  20. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Mitsuru, M. (ed) Advances in Cryptology-Asiacrypt 2009, volume 5912 of Lecture Notes in Computer Science, pp. 88–105. Springer, Berlin (2009)

  21. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes. In: Advances in Cryptology-Crypto 1999, volume 1666 of Lecture Notes in Computer Science, pp. 537–554. Springer, Berlin (1999)

  22. Gallager, R.G.: Low density parity-check codes, Monograph. MIT Press, Cambridge (1963)

  23. Gauthier-Umaña, V., Leander, G.: Practical key recovery attacks on two McEliece variants. In: International Conference on Symbolic Computation and Cryptography–SCC 2010, Egham, UK. Springer, Berlin (2010)

  24. Guo, F., Hanzo, L.: Reliability ratio based weighted bit-flipping decoding for LDPC codes. In: IEEE Vehicular Technology Conference–VTC 2005, pp. 709–713. IEEE, Stockholm, Sweden (2005)

  25. Heyse, S.: Low-Reiter: Niederreiter encryption scheme for embedded microcontrollers. In: Post-Quantum Cryptography Workshop–PQCrypto 2010, volume 6061 of Lecture Notes in Computer Science, pp. 165–181. Springer, Berlin (2010)

  26. Heyse, S., von Maurich, I., Güneysu, T.: Smaller keys for code-based cryptography: QC-MDPC McEliece implementations on embedded devices. In: International Conference on Cryptographic Hardware and Embedded Systems–CHES 2009, volume 8086 of Lecture Notes in Computer Science, pp. 273–292. Springer, Berlin (2013)

  27. Huffman, W.C., Pless. V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)

  28. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Proc. USSR Acad. Sci. 145, 293–294 (1962)

    Google Scholar 

  29. Klinc, D., Jeongseok, H., McLaughlin, S.W., Barros, J., Byung-Jae, K.: LDPC codes for the Gaussian wiretap channel. IEEE Trans. Inf. Forensics Secur. 6(3), 532–540 (2011)

    Article  Google Scholar 

  30. Koschuch, M., Lechner, J., Weitzer, A., Großschädl, J., Szekely, A., Tillich, S., Wolkerstorfer, J.: Hardware/software co-design of elliptic curve cryptography on an 8051 microcontroller. In: International Conference on Cryptographic Hardware and Embedded Systems–CHES 2006, volume 4249 of Lecture Notes in Computer Science, pp. 430–444. Springer, Berlin (2006)

  31. Leon, J.S.: A probabilistic algorithm for computing minimum weights of large error-correcting codes. IEEE Trans. Info. Theory 34(6), 1354–1359 (1988)

    Article  MathSciNet  Google Scholar 

  32. Maes, R., Schellekens, D., Verbauwhede, I.: A pay-per-use licensing scheme for hardware IP cores in recent SRAM-based FPGAs. IEEE Trans. Inf. Forensics Secur. 7(1), 98–108 (2012)

    Article  Google Scholar 

  33. McEliece, R.: A public-key cryptosystem based on algebraic coding theory. The Deep Space Network Progress Report, DSN PR, pp. 42–44 (1978)

  34. Miladinovic, N., Fossorier, M.P.C.: Improved bit-flipping decoding of low-density parity-check codes. IEEE Trans. Inf. Theory 51(4), 1594–1606 (2005)

    Google Scholar 

  35. Misoczki, R., Sendrier, N., Tilllich, J.-P., Barreto, P.S.L.M. : MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In: IEEE International Symposium on Information Theory–ISIT 2013 (2013) (to appear)

  36. Monico, C., Rosenthal, J., Shokrollahi, A.: Using low density parity check codes in the McEliece cryptosystem. In: IEEE International Symposium on Information Theory- -ISIT 2000, p. 215. IEEE, Sorrento, Italy (2000)

  37. Ngatched, T.M.N., Bossert, M., Fahrner, A., Takawira, F.: Two bit-flipping decoding algorithms for low-density parity-check codes. IEEE Trans. Commun. 57(3), 591–596 (2009)

    Article  Google Scholar 

  38. Ngatched, T.M.N., Takawira, F., Bossert. M.: A modified bit-flipping decoding algorithm for low-density parity-check codes. In: IEEE International Conference on Communications–ICC 2007, pp. 653–658. IEEE, Glasgow, Scotland (2007)

  39. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory 15(2), 159–166 (1986)

    MATH  MathSciNet  Google Scholar 

  40. Oliveira, P.F., Barros, J.: A network coding approach to secret key distribution. IEEE Trans. Inf. Forensics Secur. 3(3), 414–423 (2008)

    Article  Google Scholar 

  41. Peters, C.: Information-set decoding for linear codes over \(\mathbb{F}_q\). In: Post-Quantum Cryptography Workshop–PQCrypto 2010, volume 6061 of Lecture Notes in Computer Science, pp. 81–94. Springer, Berlin (2010)

  42. Sendrier, N.: Encoding information into constant weight words. In: IEEE International Symposium on Information Theory–ISIT 2005, pp. 435–438. IEEE (2005)

  43. Sendrier, N.: Decoding one out of many. In: Yang, B.-Y. (ed). Post-Quantum Cryptography, volume 7071 of Lecture Notes in Computer Science, pp. 51–67. Springer, Berlin (2011). doi:10.1007/978-3-642-25405-5-4

  44. Stern, J.: A method for finding codewords of small weight. Coding Theory Appl. 388, 106–133 (1989)

    Google Scholar 

  45. Tanner, R.M.: Spectral graphs for quasi-cyclic LDPC codes. In: IEEE International Symposium on Information Theory–ISIT 2001, p. 226. IEEE, Washington, DC (2001)

  46. Thangaraj, A., Dihidar, S., Calderbank, A.R., McLaughlin, S.W., Merolla, J.-M.: Applications of LDPC codes to the wiretap channel. IEEE Trans. Inf. Theory 53(8), 2933–2945 (2007)

    Article  MathSciNet  Google Scholar 

  47. Vogt, M., Poschmann, A., Paar. C.: Cryptography is feasible on 4-bit microcontrollers-a proof of concept. In: IEEE International Conference on RFID, pp. 241–248 (2009)

  48. Wadayama, T., Nakamura, K., Yagita, M., Funahashi, Y., Usami, S., Takumi, I.: Gradient descent bit flipping algorithms for decoding LDPC codes (2008). arXiv:0711.0261

  49. Wu, X., Ling, C., Jiang, M., Xu, E., Zhao, C., You, X.: New insights into weighted bit-flipping decoding. IEEE Trans. Commun. 57(8), 2177–2180 (2009)

    Article  Google Scholar 

  50. Zarrinkhat, P., Banihashemi, A.H.: Hybrid hard-decision iterative decoding of regular low-density parity-check codes. IEEE Commun. Lett. 8(4), 250–252 (2004)

    Article  Google Scholar 

  51. Zarrinkhat, P., Banihashemi, A.H.: Threshold values and convergence properties of majority-based algorithms for decoding regular low-density parity-check codes. IEEE Trans. Commun. 52(12), 2087–2097 (2004)

    Article  Google Scholar 

  52. Zhou, X.S., Cockburn, B.F., Bates, S.: Improved iterative bit flipping decoding algorithms for LDPC convolutional codes. In: IEEE Pacific Rim Conference on Communications, Computers and Signal Processing–PACRIM 2007, pp. 541–544 IEEE, Victoria, Canada (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo S. L. M. Barreto.

Additional information

This work was supported by the Cisco Research Award 2011-050 ‘Alternate Public Key Cryptosystems’ and by the Brazilian National Council for Scientific and Technological Development (CNPq) universal grant 482342/2011-0. P. Barreto is supported by the (CNPq) research productivity grant 306935/2012-0.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biasi, F.P., Barreto, P.S.L.M., Misoczki, R. et al. Scaling efficient code-based cryptosystems for embedded platforms. J Cryptogr Eng 4, 123–134 (2014). https://doi.org/10.1007/s13389-014-0070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13389-014-0070-1

Keywords

Navigation