Skip to main content

Advertisement

Log in

Case study of Swiss mortality using Bayesian modeling

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

Most mortality models to date in life insurance have inconsistent modeling assumptions between past and future survival probabilities. This paper aims at correcting this inconsistency by introducing a Bayesian framework for the joint modeling of past survival probabilities and the forecasting of future survival probabilities. To that end, the Bayesian modeling framework introduced considers both the uncertainty in the populations counts (random effects) as well as the uncertainty in the survival probability surface (systemic effects). In particular, the model uses an n-dimensional latent risk factor process to encode the survival probability surface, taking into account its intrinsic dependencies. We use the model for a case study of Swiss mortality. The case study shows that the model fits well to Swiss data and systemic events in the Swiss survival probability surface are captured by the model. The Swiss case study also exhibits the different rate of improvements in mortality for different age groups of the Swiss population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. www.mortality.org.

References

  1. Aro H, Pennanen T (2011) A user-friendly approach to stochastic mortality modelling. Eur Actuar J 1(2 Suppl):51–167

    MathSciNet  Google Scholar 

  2. Brouhns N, Denuit M, Vermunt JK (2002) A poisson log-bilinear approach to the construction of projected lifetables. Insur Math Econ 31:373–393

    Article  MathSciNet  MATH  Google Scholar 

  3. Booth H, Tickle L (2008) Mortality modeling and forecasting: a review of methods. Ann Actua Sci 3:3–43

    Article  Google Scholar 

  4. Cairns AJG, Blake D, Dowd K (2006) A two-factor model for stochastic mortality with parameter uncertainty: theory and calibration. J Risk Insur 73(4):687–718

    Article  Google Scholar 

  5. Cairns AJG, Blake D, Dowd K (2008) Modelling and management of mortality risk: a review. Scand Actua J 2–3:79–113

    Article  MathSciNet  MATH  Google Scholar 

  6. Cairns AJG, Blake D, Dowd K, Coughlan GD, Epstein D, Ong A, Balevich I (2012) A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. N Am Actua J 13(1):1–35

    Article  MathSciNet  Google Scholar 

  7. Coale J, Kisker EE (1990) Defects in data on old-age mortality in the United States: new procedures for calculating mortality schedules and life tables at the highest ages. Asian Pac Popul Forum 4(1):1–31

    Google Scholar 

  8. Czado C, Delwarde A, Denuit M (2005) Bayesian poisson log-bilinear mortality projections. Insur Math Econ 36:260–284

    Article  MathSciNet  MATH  Google Scholar 

  9. Dickey DA, Fuller WA (1979) Distribution of the estimators for autoregressive time series with a unit root. J Am Stat Assoc 74(366):427–431

    Article  MathSciNet  MATH  Google Scholar 

  10. Dowd K, Cairns AJG, Blake D, Coughlan GD, Epstein D, Khalaf-Allah M (2010) Backtesting stochastic mortality models: an ex-post evaluation multi-period-ahead density forecasts. N Am Actua J 14(3):281–298

    Article  MathSciNet  Google Scholar 

  11. Gilks WR, Richardson S, Spiegelhalter DJ (1995) Introducing Markov chain Monte Carlo. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain monte carlo in practice. Chapman & Hall/CRC, London, pp 1–19

    Google Scholar 

  12. Gompertz B (1825) On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos Trans R Soc Lond 115:513–583

    Article  Google Scholar 

  13. Heligman L, Pollard JH (1980) The age pattern of mortality. J Instit Actua 107:49–80

    Article  Google Scholar 

  14. Hyndman RJ, Ullah S (2007) Robust forecasting of mortality and fertility rates: a functional data approach. Comput Stat Data Anal 51:4942–4956

    Article  MathSciNet  MATH  Google Scholar 

  15. Lee RD, Carter LR (1992) Modeling and forecasting U.S. mortality. J Am Stat Assoc 87(419):659–671

    Google Scholar 

  16. Lütkepohl H (2005) New introduction to multiple time series analysis. Springer, Berlin

    Book  MATH  Google Scholar 

  17. Numelin E (1984) General irreducible markov chains and non-negative operators. Cambridge University Press, Cambridge

    Book  Google Scholar 

  18. Nussfelder WJ, Mackenbach JP (1996) Rectangularization of the survival curve in the Netherlands, 1950–1992. Gerontologist 36(6):773–782

    Article  Google Scholar 

  19. Roberts GO, Smith AFM (1994) Simple conditions for the convergence of the Gibbs sampler and Metropolis–Hastings algorithms. Stoch Process Appl 49:207–216

    Article  MathSciNet  MATH  Google Scholar 

  20. Seal HL (1949) Mortality data and the binomial probability law. Scand Actua J 1949(1):188–216

    Article  MathSciNet  MATH  Google Scholar 

  21. Sweeting PJ (2011) A trend-change extension of the Cairns–Blake–Dowd model. Ann Actua Sci 5(2):143–162

    Article  Google Scholar 

  22. Thatcher AR (1999) The long-term pattern of adult mortality and the highest attained age. J R Stat Soc 162:5–43

    Article  Google Scholar 

  23. Tierney L (1995) Introduction to general state-space Markov chain theory. In: Gilks WR, Richardson S, Spiegelhalter DJ (eds) Markov chain monte carlo in practice. Chapman & Hall/CRC, London, pp 59–74

    Google Scholar 

  24. Valdes B (2011) La mortalité par sida en Suisse: ses caractéristiques et son impact sur la mortalité générale. Revue Médicale Suisse 7:1652–1659

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent J. Huber.

Appendix: Optimal basis fit for other countries

Appendix: Optimal basis fit for other countries

See Tables 6 and 7.

Table 6 France: summary of values for the log-likelihood and the BIC for the optimal \(\mathcal {I}_n\) with \(2 \le n \le 7\) for females (above) and males (below)
Table 7 Austria: summary of values for the log-likelihood and the BIC for the optimal \(\mathcal {I}_n\) with \(2 \le n \le 7\) for females (above) and males (below)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huber, L.J., Wüthrich, M.V. Case study of Swiss mortality using Bayesian modeling. Eur. Actuar. J. 6, 25–59 (2016). https://doi.org/10.1007/s13385-015-0119-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-015-0119-2

Keywords

Navigation