Skip to main content
Log in

Optimal supervisory rules for pension funds under diverse pension security mechanisms

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

The present paper analyzes optimal supervisory rules for pension funds taking account of diverse pension security mechanisms: support provided by either a plan sponsor, a pension guarantee fund or by both. Assuming that the regulatory rule is either to control the shortfall probability or expected shortfall, we show that both the security mechanisms and risk measures used by the regulators have a substantial impact on the optimal regulation and hence need to be considered adequately when setting regulatory rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Frequently, the sponsoring company has also a claim on the pension fund’s assets. The payoff of the sponsor can be determined residually: \(\max \{X_T-\Phi _{PF}(T),0\}\).

  2. In practice, the regulatory boundary is often at or close to 1. However, if the funding ratio is below this level this will not automatically entail liquidation of the pension fund, as a grace period is often allowed for recovery. Therefore, the effective barrier level is lower. See Broeders and Chen [2] for a formal analysis of the impact of recovery periods.

  3. We hereby implicitly assume continuous monitoring and prompt corrective action by the regulator.

  4. A good example here from the USA is Delphi where the retirees typically received pension payments ranging from $ 3,000 to 4,000 a month, but a 55-year old retiree could receive at most $ 2025 from the Pension Benefit Guaranty Corporation.

  5. The order of the security mechanisms is not relevant for the results of the following analysis.

  6. Here \(\eta \in [0,1)\).

References

  1. Bikker JA, Broeders DWGA, de Dreu J (2010) Stock market performance and pension fund investment policy: rebalancing, free float, or market timing? Int J Cent Bank 6(2):53–79

    Google Scholar 

  2. Broeders DWGA, Chen A (2010) Pension regulation and the market value of pension liabilities—a contingent claims analysis using Parisian options. J Bank Financ 34(6):1201–1214

    Article  Google Scholar 

  3. Broeders DWGA, Chen A (2013) Pension benefit security: a comparison of solvency requirements, a pension guarantee fund and sponsor support. J Risk Insur 80(2):239–272

    Article  Google Scholar 

  4. Broeders DWGA, Pröpper M (2010) Risk based supervision of pension funds in the Netherlands. Pension fund risk management: financial and actuarial modeling. Chapman Hall, London

    Google Scholar 

  5. Cummins J (1988) Risk-based premiums for insurance guarantee funds. J Financ 43(4):823–839

    Article  MathSciNet  Google Scholar 

  6. Duan JC, Yu MT (2005) Fair insurance guarantee premia in the presence of risk-based capital regulations, stochastic interest rate and catastrophe risk. J Bank Financ 29(10):2435–2454

    Article  Google Scholar 

  7. Grosen A, Jørgensen PL (2002) The bonus-crediting mechanism of Danish pension and life insurance companies: an empirical analysis. J Pension Econ Financ 1(3):249–268

    Article  Google Scholar 

  8. Grosen A, Jørgensen PL (2002) Life insurance liabilities at market values: an analysis of insolvency risk, bonus policy, and regulatory intervention rules in a barrier option framework. J Risk Insur 69(1):63–91

    Article  Google Scholar 

  9. Karatzas I, Shreve SE (1991) Brownian motions and stochastic calculus, 2nd edn. Springer, New York

    Google Scholar 

  10. Rymaszewski P, Schmeisser H, Wagner J (2012) Under what conditions is an insurance guaranty fund beneficial for policyholders? J Risk Insur 79(3):785–815

    Article  Google Scholar 

  11. Sharpe WF (1976) Corporate pension funding policy. J Financ Econ 3(3):183–193

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simona Clever.

Appendices

Appendix: Total payoff

Note that the formulas in “Appendix Total payoff” hold for all \(\eta \in [0,1]\). However, the case \(t^*=\tau\) is not relevant for the special case \(\eta =0\).

1.1 Payoff with support by sponsor

If there is only sponsor support, the total payoff to the beneficiary in \(t^*=T\) is given by

$$\begin{aligned} {}^{\{S\}}\Phi (T)&=\Phi _{PF}(T) + \Phi _{S}(T)\\&= {\left\{ \begin{array}{ll} L_{T} + \beta \alpha \left( X_{T}- \frac{L_{}}{\alpha } \right) ^+,&{}\quad X_{T} \ge L_{T} \\ L_{T} ,&{}\quad X_{T} < L_{T} \quad {\text {and}}\quad C_{{T}}> \psi C_0 e^{g {T}} +(L_{T} -X_{{T}}) \\ X_{T} + (C_{T}-\psi C_0 e^{g {T}}), &{}\quad X_{T} < L_{T} \quad {\text {and}} \quad \psi C_0 e^{g {T}}<C_{{T}}< \psi C_0 e^{g {T}} + (L_{T} -X_{{T}})\\ X_{T}, &{}\quad X_{T}<L_{T} \quad {\text {and}} \quad C_{{T}}<\psi C_0 e^{g {T}}\end{array}\right. }\\&= X_{T}+ \beta \alpha \left( X_{T}- \frac{L_{T}}{\alpha } \right) ^+ + \min \{L_{T}-X_{T},(C_{T} - \psi C_0 e^{g {T}})^+\}. \end{aligned}$$

For \(t^*=\tau\) this reduces to

$$\begin{aligned} {}^{\{S\}}\Phi (\tau )&= {\left\{ \begin{array}{ll} L_{{\tau }}, &{}\quad C_{{\tau }} > \psi C_0 e^{g {\tau }} + (1-\eta )L_{\tau } \\ \eta L_{{\tau }} + (C_{{\tau }}-\psi C_0 e^{g {\tau }}), &{} \quad \psi C_0 e^{g {\tau }} < C_{{\tau }}< \psi C_0 e^{g {\tau }} + (1-\eta )L_{\tau } \\ \eta L_{{\tau }}, &{} \quad C_{{\tau }}< \psi C_0 e^{g {\tau }}\end{array}\right. }\\&= \eta L_{\tau } + \min \{(1- \eta ) L_{\tau }, (C_{\tau } - \psi C_0 e^{g {\tau }})^+\}. \end{aligned}$$

1.2 Payoff with support by PGF

If there is only a PGF support, for \(t^*=T\) we have

$$\begin{aligned} {}^{\{PGF\}}\Phi (T)&= \Phi _{PF}(T) + \Phi _{PGF}(T) = {\left\{ \begin{array}{ll} L_{T} + \beta \alpha \left( X_{T}- \frac{L_{T}}{\alpha } \right) ^+, &{}\quad X_{T} \ge L_{T} \\ L_{T}, &{}\quad L_{T} - \bar{L}_{T} < X_{T} < L_{T} \\ X_{T} + \bar{L}_{T}, &{}\quad X_{T} \le L_{T} - \bar{L}_{T} \end{array}\right. } \\&=X_{T} + \beta \alpha \left( X_{T}- \frac{L_{T}}{\alpha } \right) ^+ +\min \{L_{T} - X_{T}, \bar{L}_{T} \} \end{aligned}$$

For \(t^*=\tau\) this reduces to

$$\begin{aligned} {}^{\{PGF\}}\Phi (\tau )= \eta L_{\tau } + \bar{L}_{\tau } . \end{aligned}$$

1.3 Payoff with support by sponsor and PGF

If there exists both the sponsor and PGF guarantee, the payoff to the beneficiary has the following form for \(t^*=T\):

$$\begin{aligned} {}^{\{S,PGF\}}\Phi (T)&= {\left\{ \begin{array}{ll} L_{T} + \beta \alpha \left( X_{T}- \frac{L_{T}}{\alpha } \right) ^+,&{}\quad X_{T} \ge L_{T} \\ L_{T} ,&{}\quad X_{T} < L_{T}\quad {\text {and}}\\ &{}\quad C_{{T}}> \psi C_0 e^{g {T}} +(L_{T} -X_{{T}}) \\ X_{T} + (C_{T}-\psi C_0 e^{g {T}}) &{} \\ \qquad + \min \{L_{T}-X_{T}-(C_{T}-\psi C_0 e^{g {T}}),\bar{L}_{T}\}, &{} \quad X_{T} < L_{T} \quad { \text {and}}\quad \\ &{}\quad \psi C_0 e^{g {T}} <C_{{T}}< \psi C_0 e^{g {T}}\\ &{}\qquad + (L_{T} -X_{{T}})\\ X_{T} + \min \{ L_{T}-X_{T}, \bar{L}_{T}\}, &{}\quad X_{T} < L_{T} \quad {\text {and}}\quad C_{{T}}<\psi C_0 e^{g {T}} \end{array}\right. } \\&= X_{T}+\beta \alpha \left( X_{T}- \frac{L_{T}}{\alpha } \right) ^+ + \min \{L_{T}-X_{T},\bar{L}_{T}+(C_{T}-\psi C_0 e^{g {T}})^+\}\\ \end{aligned}$$

and for the case of \(t^*=\tau\) the payoff can be reduced to

$$\begin{aligned} {}^{\{S,PGF\}}\Phi (\tau )&= {\left\{ \begin{array}{ll} L_{{\tau }}, &{}\quad C_{{\tau }} > \psi C_0 e^{g {\tau }} + (1-\eta )L_{\tau } \\ \eta L_{{\tau }} + (C_{{\tau }}-\psi C_0 e^{g {\tau }}) &{}\\ \qquad +\min \{(1-\eta )L_{{\tau }}-(C_{{\tau }}-\psi C_0 e^{g {\tau }}),\bar{L}_{{\tau }} \}, &{}\quad \psi C_0 e^{g {\tau }}<C_{{\tau }}< \psi C_0 e^{g {\tau }} \\ &{} \qquad + (1-\eta )L_{\tau }\\ \eta L_{{\tau }}+\bar{L}_{{\tau }}, &{}\quad C_{{\tau }}<\psi C_0 e^{g {\tau }}\end{array}\right. }\\&= \eta L_{{\tau }} + \min \{(1-\eta )L_{{\tau }},\bar{L}_{{\tau }}+(C_{{\tau }}-\psi C_0 e^{g {\tau }})^+\} \end{aligned}$$

Shortfall probability

Note that the shortfall probability is zero for \(\eta =1\). Moreover, for \(\eta =0\) all terms of the form \(E[1_{\{\tau \le T\}} \ldots ]\) in “Appendix Shortfall probability” have to be replaced by zero.

1.1 Shortfall probability with support by sponsor

The shortfall probability under sponsor guarantee can be further determined as follows:

$$\begin{aligned} {}^{\{S\}}SP&= E\left[ 1_{\{\tau >T\}} 1_{\{X_T < L_T\}} 1_{\{C_{T}< \psi C_0e^{g T} + (L_T -X_{T})\}} \right] \nonumber \\&\quad + E[ 1_{\{\tau \le T\}} 1_{\{ C_{\tau }< \psi C_0e^{g \tau } + (1-\eta )L_{\tau } \}} ]. \end{aligned}$$
(5)

The first component of RHS can be further split into two terms:

$$\begin{aligned}&E\left[ 1_{\{\tau >T\}} 1_{\{X_T < L_T\}} 1_{\{C_{T}< \psi C_0 e^{g T} + (L_T -X_{T})\}} \right] \\&\quad = E\left[ 1_{\{X_T < L_T\}} 1_{\{C_{T}< \psi C_0 e^{g T} + (L_T -X_{T})\}} \right] -E\left[ 1_{\{\tau \le T\}} 1_{\{X_T < L_T\}} 1_{\{C_{T}< \psi C_0 e^{g T} + (L_T -X_{T})\}} \right] \end{aligned}$$

Relying on the joint distribution of \((\ln X_T, \ln C_T)\) (bivariate normally distributed log-returns) and the density function of the first hitting time \(\tau\), we obtain

$$\begin{aligned}&E\left[ 1_{\{\tau >T\}} 1_{\{X_T < L_T\}} 1_{\{C_{T}< \psi C_0 e^{g T} + (L_T -X_{T})\}} \right] \\&\quad = E\left[ 1_{\{X_T < L_T\}} 1_{\{C_{T}< \psi C_0 e^{g T} + (L_T -X_{T})\}} \right] \\&\qquad - \int _0^T E\left[ 1_{\{X_T < L_T\}} 1_{\{C_{T}< \psi C_0 e^{g T} + (L_T -X_{T})\}}|\tau =t \right] P(\tau \in d t )\\&\quad = \int _{-\infty }^{d_{x1}} \int _{-\infty }^{d_{y1}(x)} n(x)\, n(y)\,dy\,dx -\int _0^T \int _{-\infty }^{d_{x2}(t)} \int _{-\infty }^{d_{y2}(x,t)}n(x)\,n(y) \,f(t)\,dy\,dx\,dt\\&\quad = \int _{-\infty }^{d_{x1}} n(x)\, N(d_{y1}(x))\,dx -\int _0^T \int _{-\infty }^{d_{x2}(t)} n(x)\,N(d_{y2}(x,t)) \,f(t)\,dx\, dt \end{aligned}$$

with

$$\begin{aligned} d_{x1}&= \frac{\ln \frac{L_T }{X_0}-(\hat{\mu }-\frac{1}{2} \theta ^2\sigma ^2)T}{\theta \sigma \sqrt{T}}\end{aligned}$$
(6)
$$\begin{aligned} d_{x2}(t)&= \frac{\ln \frac{L_T }{\eta L_t}-(\hat{\mu }-\frac{1}{2} \theta ^2\sigma ^2)(T-t)}{\theta \sigma \sqrt{T-t}}\end{aligned}$$
(7)
$$\begin{aligned} d y_1(x)&= \frac{\ln \frac{\psi C_0 e^{g T}+L_T- X_0\exp \left\{ \hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)T + \theta \sigma \sqrt{T} x\right\} }{C_0}-(\mu _c-\frac{1}{2} \sigma _c^2)T-\sigma _c\rho \sqrt{T}x}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}}\end{aligned}$$
(8)
$$\begin{aligned} d y_2(x,t)&= \frac{\ln \frac{\psi C_0 e^{g T}+L_T- \eta L_t \exp \left\{ \hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)(T-t) + \theta \sigma \sqrt{T-t} x\right\} }{C_0}-(\mu _c-\frac{1}{2} \sigma _c^2)T}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}}\nonumber \\&\quad -\frac{\sigma _c\rho ( \frac{\ln \frac{\eta L_t}{X_0}-(\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2)t}{\theta \sigma }+\sqrt{T-t}x)}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}} \end{aligned}$$
(9)

where \(n(\cdot )\) and \(N(\cdot )\) are the density function and the cumulative distribution function of a standard normal distribution, \(\hat{\mu }:=r+\theta (\mu -r)\) and \(f(\cdot )\) is the density function of the first hitting time \(\tau\):

$$\begin{aligned} f(t)&= \frac{-\ln \frac{\eta L_0}{X_0}}{\theta \sigma t^{3/2}} n\left( \frac{\ln \frac{\eta L_0}{X_0} -\tilde{\mu } \sigma \theta t}{\theta \sigma \sqrt{t}} \right) \end{aligned}$$
(10)

with \(\tilde{\mu }:= (r - \delta +\theta (\mu -r) -\frac{\theta ^2 \sigma ^2}{2} )/(\theta \sigma )\).

The last term of (5) can be computed by using the density of \(\tau\):

$$\begin{aligned} E[ 1_{\{\tau \le T\}} 1_{\{C_{\tau }< \psi C_0e^{g \tau } + (1-\eta )L_{\tau } \}} ]&= \int _0^T N({d_{y3}(t)}) f(t) dt, \end{aligned}$$

with

$$\begin{aligned} d_{y3}(t)&= \frac{\ln \frac{\psi C_0 e^{g t} + (1-\eta )L_{t} }{C_0 } -(\mu _c -\frac{1}{2} \sigma _c^2) t -\frac{\rho \sigma _c}{\sigma \theta } (\ln \frac{\eta L_{t} }{X_0} - (\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2) t) }{\sigma _c \sqrt{t}\sqrt{1-\rho ^2} }. \end{aligned}$$
(11)

1.2 Shortfall probability with support by sponsor and PGF

In this case, the shortfall probability can be determined very similarly as in 7.1. Note that we have to adjust the limits for the integration:

$$\begin{aligned} \widetilde{d_{x1}}&= \frac{\ln \frac{L_T-\bar{L}_T}{X_0}-(\hat{\mu }-\frac{1}{2} \theta ^2\sigma ^2)T}{\theta \sigma \sqrt{T}}\end{aligned}$$
(12)
$$\begin{aligned} \widetilde{d_{x2}}(t)&= \frac{\ln \frac{L_T-\bar{L}_T }{\eta L_t}-(\hat{\mu }-\frac{1}{2} \theta ^2\sigma ^2)(T-t)}{\theta \sigma \sqrt{T-t}}\end{aligned}$$
(13)
$$\begin{aligned} \widetilde{d_{y1}}(x)&= \frac{\ln \frac{\psi C_0 e^{g T}+L_T-\bar{L}_T- X_0\exp \left\{ \hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)T + \theta \sigma \sqrt{T} x\right\} }{C_0}-(\mu _c-\frac{1}{2} \sigma _c^2)T-\sigma _c\rho \sqrt{T}x}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}} \end{aligned}$$
(14)
$$\begin{aligned} \widetilde{ d_{y2}}(x,t)&=\frac{\ln \frac{\psi C_0 e^{g T}+L_T-\bar{L}_T- \eta L_t \exp \left\{ \hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)(T-t) + \theta \sigma \sqrt{T-t} x\right\} }{C_0}-(\mu _c-\frac{1}{2} \sigma _c^2)T}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}} \end{aligned}$$
(15)
$$\begin{aligned}&\quad -\frac{\sigma _c\rho ( \frac{\ln \frac{\eta L_t}{X_0}-(\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2)t}{\theta \sigma }+\sqrt{T-t}x)}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}} \end{aligned}$$
(16)
$$\begin{aligned} \widetilde{d_{y3}}(t)&= \frac{\ln \frac{\psi C_0 e^{g t} + (1-\eta )L_t - \bar{L}_t }{C_0 } -(\mu _c -\frac{1}{2} \sigma _c^2) t -\frac{\rho \sigma _c}{\sigma \theta } \ln \frac{\eta L_t }{X_0} - (\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2) t }{\sigma _c \sqrt{t}\sqrt{1-\rho ^2} }. \end{aligned}$$
(17)

Then

$$\begin{aligned}&E\left[ 1_{\{\tau >T\}} 1_{\{X_T < L_T-\bar{L}_T\}} 1_{\{C_{T}< \psi C_0 e^{g T} + (L_T -X_{T})-\bar{L}_T \}} \right] \\&\quad = \int _{-\infty }^{\widetilde{d_{x1}}} n(x)\, N(\widetilde{d_{y1}}(x)) dx -\int _0^T \int _{-\infty }^{\widetilde{d_{x2}}(t)} n(x)\,N(\widetilde{d_{y2}}(x,t)) \,f(t)\,dx\,dt. \end{aligned}$$

and

$$\begin{aligned} E[ 1_{\{\tau \le T\}} 1_{\{C_{\tau }< \psi C_0e^{g \tau } + (1-\eta )L_{\tau } -\bar{L}_{\tau }\}} ]&= \int _0^T N(\widetilde{d_{y3}}(t)) f(t) \,dt. \end{aligned}$$

Expected shortfall

Note that the expected shortfall is zero for \(\eta =1\). Moreover, for \(\eta =0\) all terms of the form \(E[1_{\{\tau \le T\}} \ldots ]\) in “Appendix Expected shortfall” have to be replaced by zero.

1.1 Expected shortfall without external support

If there is no external support, the expected shortfall can be further determined as follows:

$$\begin{aligned} {}^{\{\}}ES=E[(1-\eta )L_\tau 1_{\{\tau \le T\}}]+E[(L_T-X_T)1_{\{\tau >T\}} 1_{\{L_T>X_T\}}]. \end{aligned}$$

The first term of the RHS is given by

$$\begin{aligned} E[(1-\eta )L_\tau 1_{\{\tau \le T\}}]&=\int _0^T (1-\eta ) L_t f(t)\,dt =(1-\eta ) L_0 \int _0^T e^{\delta t} f(t)\,dt \end{aligned}$$

where \(f(\cdot )\) is defined in (10). The second term of RHS is given by

$$\begin{aligned}&E\left[ (L_T-X_T)1_{\{\tau >T\}} 1_{\{X_T<L_T\}}\right] \\&\quad =\; E[(L_T-X_T)1_{\{X_T<L_T\}}] - \int _0^TE\left[ (L_T-X_T)1_{\{X_T<L_T\}} \mid \tau = t\right] P(\tau \in dt)\\&\quad =\; \int _{-\infty }^{d_{x1}}\left( L_T-X_0\,\exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)T+\sigma \theta \sqrt{T}x\right\} \right) n(x)\, dx\\&\qquad -\int _0^T \int _{-\infty }^{d_{x2}(t)} \left( L_T-\eta L_t\,\exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)(T-t)+\sigma \theta \sqrt{T-t}x\right\} \right) n(x)\,f(t)\,dx\,dt \end{aligned}$$

where \(d_{x1}\) and \(d_{x2}(t)\) are defined as in (6) and (7) of “Appendix Shortfall probability with support by sponsor”.

1.2 Expected shortfall with support by PGF

If there exists a PGF, the expected shortfall can be determined very similarly to the case without any support (“Appendix Expected shortfall without external support”). The first term is given by

$$\begin{aligned} E[(1-\eta )(1-\gamma )L_\tau 1_{\{\tau \le T\}}]&=(1-\eta )(1-\gamma ) L_0 \int _0^T e^{\delta t} f(t)\,dt. \end{aligned}$$

The second term is given by

$$\begin{aligned}&E\left[ (L_T(1-\gamma +\gamma \eta )-X_T)1_{\{\tau >T\}} 1_{\{X_T<L_T(1-\gamma +\gamma \eta )\}}\right] \\&\quad = \int _{-\infty }^{\widetilde{d_{x1}}}\left( L_T(1-\gamma +\gamma \eta )-X_0\,\exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)T+\sigma \theta \sqrt{T}x\right\} \right) n(x)\, dx\\&\qquad -\! \int _0^T \! \int _{-\infty }^{\widetilde{d_{x2}}(t)} \! \left( L_T(1-\gamma +\gamma \eta )-\eta L_t \exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)(T-t)+\sigma \theta \sqrt{T-t}x\right\} \right) \!n(x)\,\!f(t)\,\!dx\,\!dt \end{aligned}$$

where \(\widetilde{d_{x1}}\) and \(\widetilde{d_{x2}}(t)\) are defined as in (12) and (13) of “Appendix Shortfall probability with support by sponsor and PGF”.

1.3 Expected shortfall with support by sponsor

As observed in (4), the expected shortfall under the sponsor guarantee consists of four terms. The determination of these four terms is very similar as in the calculation of the shortfall probability under the sponsor guarantee. Hence, we decide not to write down the detailed derivation and jump to the results immediately. The first term is given by the following double integrals

$$\begin{aligned}&E[((1-\eta )L_\tau - (C_\tau - \psi C_0 e^{g \tau })) 1_{\{\tau \le T\}} 1_{\{C_0 e^{g \tau } < C_{\tau }< \psi C_0 e^{g \tau } + (1-\eta )L_{\tau })\}}]\nonumber \\&\quad = \int _0^T \int _{ d_{y4}(t)}^{d_{y3}(t)} ((1-\eta )L_t - (C_t(y) - \psi C_0 e^{gt}))\, n(y)\, f(t)\, dy\, dt \nonumber \\ {\text {with}} \; \; C_t(y)&= \,C_0\,\exp \left\{ (\mu _c-\frac{1}{2} \sigma _c^2)t+\sigma _c(\rho \frac{ \ln \frac{\eta L_t }{X_0} - (\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2) t }{\theta \sigma }+\sqrt{1-\rho ^2}\sqrt{t}y) \right\} \nonumber \\ d_{y4}(t)&:= \frac{\ln \frac{\psi C_0 e^{g t}}{C_0 } -(\mu _c -\frac{1}{2} \sigma _c^2) t -\frac{\rho \sigma _c}{\sigma \theta } (\ln \frac{\eta L_t }{X_0} - (\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2) t)}{\sigma _c \sqrt{t}\sqrt{1-\rho ^2} }. \end{aligned}$$
(18)

The second term is determined similarly

$$\begin{aligned}&E[(1-\eta )L_\tau 1_{\{\tau \le T\}} 1_{\{C_{\tau }< \psi C_0 e^{g \tau }\}}]\\&\quad = \int _0^T \int _{-\infty }^{d_{y4}(t)} (1-\eta )L_t\, n(y)\, f(t)\, dy\, dt= \int _0^T (1-\eta )L_t\, N(d_{y4}(t))\, f(t)\, dt \end{aligned}$$

The third term owns the following form:

$$\begin{aligned}&E[(L_T-X_T-(C_T- \psi C_0 e^{g T}))1_{\{\tau >T\}} 1_{\{X_T<L_T\}}1_{\{C_0 e^{g T} < C_{T}< \psi C_0 e^{g T} + (L_{T} -X_{T})\}}]\,\\&\quad = \int _{-\infty }^{d_{x1}} \int _{d_{y5}(x)}^{d_{y1}(x)}(L_T-X_0\,\exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)T+\theta \sigma \sqrt{T}x\right\} \\&\qquad -C_0\, \exp \left\{ (\mu _c-\frac{1}{2} \sigma _c^2)T+\sigma _c (\rho \sqrt{T}x+\sqrt{1-\rho ^2} \sqrt{T} y)\right\} +\psi C_0 e^{gT}) n(x)\, n(y)\, dy \,dx\\&\qquad -\int _0^T \int _{-\infty }^{d_{x2}(t)} \int _{d_{y6}(x,t)}^{d_{y2}(x,t)}(L_T-\eta L_t\,\exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)(T-t)+\theta \sigma \sqrt{T-t}x\right\} \\&\qquad -C_0\, \exp \left\{ (\mu _c-\frac{1}{2} \sigma _c^2)T+\sigma _c(\rho (\frac{ \ln \frac{\eta L_t }{X_0} - (\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2) t }{\theta \sigma }+\sqrt{T-t}x)+\sqrt{1-\rho ^2}\sqrt{T}y) \right\} \\&\qquad +\psi C_0 e^{gT}) n(x)\,n(y)\, f(t)\,dy\, dx\, dt \end{aligned}$$

with

$$\begin{aligned} d_{y5}(x)&:=\; \frac{\ln \frac{\psi C_0 e^{g T}}{C_0}-(\mu _c-\frac{1}{2} \sigma _c^2)T-\sigma _c\rho \sqrt{T}x}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}}\end{aligned}$$
(19)
$$\begin{aligned} d_{y6}(x,t)&=\; \frac{\ln \frac{\psi C_0 e^{g T}}{C_0}-(\mu _c-\frac{1}{2} \sigma _c^2)T-\sigma _c\rho ( \frac{\ln \frac{\eta L_t}{X_0}-(\hat{\mu }-\frac{1}{2} \sigma ^2 \theta ^2)t}{\theta \sigma }+\sqrt{T-t}x)}{\sigma _c\sqrt{T}\sqrt{1-\rho ^2}} \end{aligned}$$
(20)

Finally, the last term is given by

$$\begin{aligned}&E[(L_T-X_T)1_{\{\tau >T\}} 1_{\{X_T<L_T\}}1_{\{C_{T}< \psi C_0 e^{g T}\}}]\,\\&\quad = \int _{-\infty }^{d_{x1}} \int _{-\infty }^{d_{y5}(x)}(L_T-X_0\,\exp \{(\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)T+\theta \sigma \sqrt{T}x\}) n(y)\,n(x)\, dy dx\\&\qquad -\int _0^T \int _{-\infty }^{d_{x2}(t)} \int _{-\infty }^{d_{y6}(x,t)}\left( L_T-\eta L_t\,\exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)(T-t)+\theta \sigma \sqrt{T-t}x\right\} \right) \\&\qquad \times n(y)\,n(x)\,f(t)\,dy\,dx\,dt\\&\quad =\int _{-\infty }^{d_{x1}}(L_T-X_0\,\exp \{(\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)T+\theta \sigma \sqrt{T}x\}) N(d_{y5}(x))\,n(x)\,dx\\&\qquad -\int _0^T \int _{-\infty }^{d_{x2}(t)}\left( L_T-\eta L_t\,\exp \left\{ (\hat{\mu }-\frac{1}{2} \theta ^2 \sigma ^2)(T-t)+\theta \sigma \sqrt{T-t}x\right\} \right) \\&\qquad \times N(d_{y6}(x,t))\,n(x)\,f(t)\,dx\,dt \end{aligned}$$

where \(d_{x1}\), \(d_{y1}(x)\), \(d_{x2}(t)\), \(d_{y2}(x,t)\), \(d_{y5}(x)\), \(d_{y6}(x,t)\) are defined in (6), (8), (7), (9), (19) and (20).

1.4 Expected shortfall with support by sponsor and PGF

The expected shortfall under sponsor guarantee and PGF support can be determined very similarly to the case with only sponsor support (“Appendix Expected shortfall with support by sponsor”). For the first and second term we have to consider the additional factor \((1-\gamma )\) and use the adjusted \(\widetilde{d_{y3}}(t)\) instead of \(d_{y3}(t)\). This yields For the third and fourth term, considering the additional \(\bar{L}_T\) and the adjusted \(\widetilde{d_{x1}}\), \(\widetilde{d_{x2}}(t)\), \(\widetilde{d_{y1}}(x)\) and \(\widetilde{d_{y2}}(x)\), which are defined in (12)–(16). In this place, we leave out the details.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, A., Clever, S. Optimal supervisory rules for pension funds under diverse pension security mechanisms. Eur. Actuar. J. 5, 29–53 (2015). https://doi.org/10.1007/s13385-015-0103-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-015-0103-x

Keywords

Navigation