Skip to main content
Log in

Evaluation of the EU proposed farm income stabilisation tool by skew normal linear mixed models

  • Original Research Paper
  • Published:
European Actuarial Journal Aims and scope Submit manuscript

Abstract

The European Commission has introduced new risk management tools in the rural development pillar 2 of the Common Agricultural Policy. One of them consists in providing co-financing support to mutual funds compensating farmers who experience a severe drop in their income. This paper analyses this income stabilisation tool for a region in Belgium by means of a skew normal linear mixed model. Relying on the farm accountancy data network, this analysis focuses on estimating the probability that such a fund would need to intervene and, in that case, the expected amount of each farm income compensation. The predictive distribution of future incomes given past revenues trajectory is derived and used for evaluation purposes. Particular attention is paid to additional requirements that could be imposed to the income stabilisation tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mahul O, Stutley CJ (2010) Government support to agricultural insurance. The World Bank, Washington

    Book  Google Scholar 

  2. Meuwissen M, Huirne R, Skees J (2003) Income insurance in European agriculture. EuroChoices 2:12–17

    Article  Google Scholar 

  3. Diaz-Caneja M, Garrido A (2009) Evaluating the potential of whole-farm insurance over crop-specific insurance. Spanish J Agric Res 7:3–11

    Article  Google Scholar 

  4. Mahul O, Wright B (2003) Designing optimal crop revenue insurance. Am J Agric Econ 85:580–589

    Article  Google Scholar 

  5. OECD (2011) Managing risk in agriculture: policy assessment and design. OECD Publishing, Paris

    Google Scholar 

  6. European Commission (2009) Income variability and potential cost of income insurance for EU. Directorate-General for Agriculture and Rural Development, European Commission, Brussels

  7. Coble K, Dismukes R, Thomas S (2007) Policy implications of crop yield and revenue variability at differing levels of disaggregation. In: Paper presented at the American Agricultural Economics Association Annual Meeting, Portland, Oregon, USA

  8. Antonio K, Beirlant J (2007) Actuarial statistics with generalized linear mixed models. Insur: Math Econ 40:58–76

    MathSciNet  MATH  Google Scholar 

  9. Greene W (2011) Econometric analysis. Prentice Hall, New Jersey

    Google Scholar 

  10. Bolance C, Guillen M, Pelican E, Vernic R (2008) Skewed bivariate models and nonparametric estimation for the CTE risk measure. Insur: Math Econ 43:386–393

    MathSciNet  MATH  Google Scholar 

  11. Eling M (2012) Fitting insurance claims to skewed distributions: are the skew normal and skew-student good models? Insur: Math Econ 51:239–248

    MathSciNet  Google Scholar 

  12. Pigeon M, Antonio K, Denuit M (2013) Individual loss reserving with the multivariate skew normal framework. ASTIN Bull 43:399–428

    Article  MATH  Google Scholar 

  13. Azzalini A (1985) A class of distributions which includes the normal ones. Scand J Stat 12:171–178

    MathSciNet  MATH  Google Scholar 

  14. Azzalini A, Dalla Valle A (1996) The multivariate skew-normal distribution. Biometrika 83:715–726

    Article  MathSciNet  MATH  Google Scholar 

  15. Gupta A, Chen J (2004) A class of multivariate skew normal models. Ann Inst Stat Math 56:305–315

    Article  MathSciNet  MATH  Google Scholar 

  16. Akdemir D, Gupta A (2010) A matrix variate skew distribution. Eur J Pure Appl Math 3:128–140

    MathSciNet  MATH  Google Scholar 

  17. Arellano-Valle RB, Bolfarine H, Lachos V (2005) Skew-normal linear mixed models. J Data Sci 3:415–438

    Google Scholar 

  18. Lin T (2009) Maximum likelihood estimation for multivariate skew normal mixture models. J Multivar Anal 100:257–265

    Article  MATH  Google Scholar 

  19. Arellano-Valle RB, Genton MG (2005) On fundamental skew distributions. J Multivar Anal 96:93–116

    Article  MathSciNet  MATH  Google Scholar 

  20. DGARNE (2011) Évolution de l’économie agricole et horticole de la Région wallonne 2009–2010, Direction Générale opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement. Service public de Wallonie, Namur

    Google Scholar 

  21. Henry de Frahan B, Saegerman C, Denuit M, Dubuisson B, Ledoux O, Pigeon M, Vandeputte S, Weynants S (2011) Étude de la possibilité et proposition de mise en place de mécanismes assurantiels ou de mutualisation des risques dans le secteur agricole en région wallonne. Université catholique de Louvain et Université de Liège, Louvain-la-Neuve

    Google Scholar 

  22. Barndorff-Nielsen O (1977) Exponentially decreasing distributions for the logarithm of particle size. Proc R Soc Lond A 353:401–419

    Article  Google Scholar 

  23. McNeil A, Frey R, Embrechts P (2005) Quantitative risk management: concepts, techniques and tools. Princeton University Press, Princeton

    Google Scholar 

  24. Breymann W, Dias A, Embrechts P (2003) Dependence structures for multivariate high-frequency data in finance. Quant Fin 3(1):1–14

    Article  MathSciNet  Google Scholar 

  25. Abramowitz M, Stegun I (1972) Handbook of mathematical functions. Dover Books on Mathematics, Dover, New York

    MATH  Google Scholar 

  26. WTO (1994) Final act of the 1986–1994 Uruguay round of trade negotiations. World Trade Organization, Geneva

    Google Scholar 

  27. Rejesus R, Coble K, Knight R, Jin Y (2006) Developing experience-based premium rate discounts in crop insurance. Am J Agric Econ 88:409–419

    Article  Google Scholar 

  28. Turvey C (2012) Whole farm income insurance. J Risk Insur 79:515–540

    Article  Google Scholar 

  29. Stokes J, Nayda W (2003) The pricing of revenue assurance: reply. Am J Agric Econ 85:1066–1069

    Article  Google Scholar 

  30. Myers R, Liu Y, Hanson S (2005) How should we value agricultural insurance contracts? In: Paper presented at the American Agricultural Economics Association Annual Meeting, Providence, Rhode Island, USA

  31. Chambers R (2007) Valuing agricultural insurance. Am J Agric Econ 89:596–606

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous referees and the editor for numerous constructive comments which have improved earlier versions of the present paper. The financial support from the Direction Générale opérationnelle de l’Agriculture, des Ressources naturelles et de l’Environnement of the Belgian Ministry of Wallonia is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathieu Pigeon.

Appendix

Appendix

1.1 Preliminary results

Lemma 1

Let \({\varvec{X}} \sim N_n(\varvec{\mu }, \varvec{\varSigma })\). Then, for \(\mathbf {a}\) \((k \times 1)\) and \(\mathbf B\) \((k \times n)\), we have

$$\begin{aligned} E\! \left[ \varPhi _k\left( \mathbf {a} + \mathbf {B}{\varvec{X}}; \varvec{\nu }, \varvec{\varOmega }\right) \right]&= \varPhi _k\left( \mathbf {a}; \varvec{\nu } - \mathbf {B}\varvec{\mu }, \varvec{\varOmega } + \mathbf {B}\varvec{\varSigma }\mathbf {B}'\right) . \end{aligned}$$

Proof

Let \({\varvec{Z}} \sim N_k(\varvec{\nu }, \varvec{\varOmega })\) and

$$\begin{aligned} E\! \left[ \varPhi _k\left( \mathbf {a} + \mathbf {B}{\varvec{X}}; \varvec{\nu }, \varvec{\varOmega }\right) \right]&= E\! \left[ P\left( {\varvec{Z}} \le \mathbf {a} + \mathbf {Bx}| {\varvec{X}} = \mathbf {x}\right) \right] \\&= E\! \left[ P\left( {\varvec{Z}} - \mathbf {Bx} \le \mathbf {a} | {\varvec{X}} = \mathbf {x}\right) \right] \\&= E\! \left[ P\left( \mathbf {U} \le \mathbf {a} | {\varvec{X}} = \mathbf {x}\right) \right] \\&= P\left( \mathbf {U} \le \mathbf {a}\right) , \end{aligned}$$

where \(\mathbf {U} \sim N_k(\varvec{\nu } - \mathbf {B}\varvec{\mu }, \varvec{\varOmega } + \mathbf {B}\varvec{\varSigma }\mathbf {B}')\).

Lemma 2

Let \({\varvec{X}} \sim N_q(\varvec{\nu }, \varvec{\varOmega })\) and \({\varvec{Y}} \sim N_p(\varvec{\mu }, \varvec{\varSigma })\). Then,

$$\begin{aligned} \phi _p\left( {\varvec{y}}; \varvec{\mu } + \mathbf {Ax}, \varvec{\varSigma }\right) \phi _q\left( \mathbf {x}; \varvec{\nu }, \varvec{\varOmega }\right)&= \phi _p\left( {\varvec{y}}; \varvec{\mu } + \mathbf {A}\varvec{\nu }, \varvec{\varSigma } + \mathbf {A}\varvec{\varOmega }\mathbf {A}'\right) \\&\quad \times \phi _q\left( \mathbf {x}; \varvec{\nu } + \varvec{\varLambda }\mathbf {A}'\varvec{\varSigma }^{-1}\left( {\varvec{y}} - \varvec{\mu } - \mathbf {A}\varvec{\nu }\right) , \varvec{\varLambda }\right) , \end{aligned}$$

where \(\varvec{\varLambda } = \left( \varvec{\varOmega }^{-1} + \mathbf {A}'\varvec{\varSigma }^{-1}\mathbf {A}\right) ^{-1}\).

Proof

Define \(\mathbf {z} = {\varvec{y}} - \varvec{\mu } - \mathbf {A}\varvec{\nu }\) and \(\mathbf {w} = \mathbf {x} - \varvec{\nu }\), we have

$$\begin{aligned}&(\mathbf {z} - \mathbf {Aw})'\varvec{\varSigma }^{-1}(\mathbf {z} - \mathbf {Aw}) + \mathbf {w}'\varvec{\varOmega }^{-1}\mathbf {w}\\&= \mathbf {z}\left( \varvec{\varSigma } + \mathbf {A}\varvec{\varOmega }\mathbf {A}'\right) ^{-1}\mathbf {z} + \left( \mathbf {w} - \varvec{\varLambda }\mathbf {A}'\varvec{\varSigma }^{-1}\mathbf {z}\right) '\varvec{\varLambda }^{-1}\left( \mathbf {w} - \varvec{\varLambda }\mathbf {A}'\varvec{\varSigma }^{-1}\mathbf {z}\right) , \end{aligned}$$

and \(|\varvec{\varSigma } + \mathbf {A}\varvec{\varOmega }\mathbf {A}'|| \varvec{\varLambda }| = |\varvec{\varSigma }||\varvec{\varOmega }|\).

1.2 Proof of Proposition 1

  1. (i)

    We have, with \(\mathbf {x} = {\varvec{y}} - {\varvec{X}}\varvec{\beta } - \varvec{\varOmega }\mathbf {t}\),

    $$\begin{aligned}&M_{{\varvec{Y}}}(\mathbf {t}) = E\! \left[ e^{\mathbf {t}'{\varvec{Y}}} \right] \\&= \int e^{\mathbf {t}'{\varvec{y}}}2^T\phi _T\left( {\varvec{y}}; {\varvec{X}}\varvec{\beta }, \varvec{\varOmega }^*\right) \varPhi _T\left( \varvec{\varDelta }'\left( \varvec{\varOmega }^*\right) ^{-1}({\varvec{y}} - {\varvec{X}}\varvec{\beta }); \mathbf {0}, \mathbf {I}_T - \varvec{\varDelta }'\left( \varvec{\varOmega }^*\right) ^{-1}\varvec{\varDelta }\right) \,d{\varvec{y}}\\&= 2^Te^{\mathbf {t}'{\varvec{X}}\varvec{\beta } + 0.5\mathbf {t}'\varvec{\varOmega }^*\mathbf {t}}\int \phi _T\left( \mathbf {x}; \mathbf {0},\varvec{\varOmega }^* \right) \varPhi _T\left( \varvec{\varDelta }'\left( \varvec{\varOmega }^*\right) ^{-1}(\mathbf {x} + \varvec{\varOmega }^*\mathbf {t}); \mathbf {0}, \mathbf {I}_T - \varvec{\varDelta }'\left( \varvec{\varOmega }^*\right) ^{-1}\varvec{\varDelta }\right) \,d\mathbf {x}\\&= 2^Te^{\mathbf {t}'{\varvec{X}}\varvec{\beta } + 0.5\mathbf {t}'\varvec{\varOmega }^*\mathbf {t}}E\! \left[ \varPhi _T\left( \varvec{\varDelta }'\left( \varvec{\varOmega }^*\right) ^{-1}({\varvec{X}} + \varvec{\varOmega }^*\mathbf {t}); \mathbf {0}, \mathbf {I}_T - \varvec{\varDelta }'\left( \varvec{\varOmega }^*\right) ^{-1}\varvec{\varDelta }\right) \right] , \end{aligned}$$

    where \(X \sim N_T\left( \mathbf {0}, \varvec{\varOmega }^*\right)\). By using Lemma 1, we obtain

    $$\begin{aligned}&= 2^Te^{\mathbf {t}'{\varvec{X}}\varvec{\beta } + 0.5\mathbf {t}'\varvec{\varOmega }^*\mathbf {t}}\varPhi _T\left( \varvec{\varDelta }'\mathbf {t}\right) . \end{aligned}$$
  2. (ii)

    The proof is direct from result (i).

1.3 Proof of Proposition 2

The marginal probability density function is given by (with \(\varvec{\varOmega } = \varvec{\varSigma } + \varvec{\varDelta }\varvec{\varDelta }'\))

$$\begin{aligned} f_{{\varvec{Y}}}({\varvec{y}})&= \int \limits _{\mathbb {R}^{T}} MSN({\varvec{y}}|\varvec{\varTheta }; {\varvec{X}}\varvec{\beta } + {\varvec{Z}}\varvec{\varTheta }, \varvec{\varSigma }, \varvec{\varDelta })N_T(\varvec{\varTheta }; \mathbf {0}, \varvec{\varPsi })\,\mathbf {d}\varvec{\varTheta }\\&= \int \limits _{\mathbb {R}^T} 2^T\phi _T\left( {\varvec{y}}; {\varvec{X}}\varvec{\beta } + {\varvec{Z}}\varvec{\varTheta }, \varvec{\varOmega }\right) \phi _T\left( \varvec{\varTheta }; \mathbf {0}, \varvec{\varPsi }\right) \\&\quad \times \varPhi _T\left( \varvec{\varDelta }'\varvec{\varOmega }^{-1}({\varvec{y}} - {\varvec{X}}\varvec{\beta } - {\varvec{Z}}\varvec{\varTheta }); \mathbf {0}, \mathbf {I}_T - \varvec{\varDelta }'\varvec{\varOmega }^{-1}\varvec{\varDelta }\right) \,\mathbf {d}\varvec{\varTheta }. \end{aligned}$$

By using Lemma 2, we have

$$\begin{aligned} \phi _T\left( {\varvec{y}}; {\varvec{X}}\varvec{\beta } + {\varvec{Z}}\varvec{\varTheta }, \varvec{\varOmega }\right) \phi _T\left( \varvec{\varTheta }; \mathbf {0}, \varvec{\varPsi }\right)&= \phi _T\left( {\varvec{y}}; {\varvec{X}}\varvec{\beta }, \varvec{\varOmega } + {\varvec{Z}}\varvec{\varPsi }{\varvec{Z}}'\right) \\ \phi _T\left( \varvec{\varTheta }; \varvec{\varLambda }{\varvec{Z}}'\varvec{\varOmega }^{-1}({\varvec{y}} - {\varvec{X}}\varvec{\beta }), \varvec{\varLambda }\right) , \end{aligned}$$

where \(\varvec{\varLambda } = \left( \varvec{\varPsi }^{-1} + {\varvec{Z}}'\mathbf {D}^{-1}\varvec{\varOmega }\right) ^{-1}\). So, the marginal probability density function can be written as

$$\begin{aligned} f_{{\varvec{Y}}}({\varvec{y}}) = 2^T\phi _T\left( {\varvec{y}}; {\varvec{X}}\varvec{\beta }, \varvec{\varOmega } + {\varvec{Z}}\varvec{\varPsi }{\varvec{Z}}'\right) \\ E\! \left[ \varPhi _T\left( \varvec{\varDelta }'\varvec{\varOmega }^{-1}({\varvec{y}} - {\varvec{X}}\varvec{\beta } - {\varvec{Z}}\mathbf {W}); \mathbf {0}, \mathbf {I}_T - \varvec{\varDelta }'\varvec{\varOmega }^{-1}\varvec{\varDelta }\right) \right] , \end{aligned}$$

where \(\mathbf {W} \sim N_T\left( \varvec{\varLambda }{\varvec{Z}}'\varvec{\varOmega }^{-1}({\varvec{y}} - {\varvec{X}}\varvec{\beta }), \varvec{\varLambda }\right)\). By using Lemma 1, we obtain

$$\begin{aligned} f_{{\varvec{Y}}}({\varvec{y}})&= 2^T\phi _T\left( {\varvec{y}}; {\varvec{X}}\varvec{\beta }, \varvec{\varOmega } + {\varvec{Z}}\varvec{\varPsi }{\varvec{Z}}'\right) \\&\quad \times \varPhi _T\left( \varvec{\varDelta }'\left( \varvec{\varOmega } + {\varvec{Z}}\varvec{\varPsi }{\varvec{Z}}'\right) ^{-1}({\varvec{y}} - {\varvec{X}}\varvec{\beta }); \mathbf {0}, \mathbf {I}_T - \varvec{\varDelta }'\left( \varvec{\varOmega } + {\varvec{Z}}\varvec{\varPsi }{\varvec{Z}}'\right) ^{-1}\varvec{\varDelta }\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pigeon, M., Henry de Frahan, B. & Denuit, M. Evaluation of the EU proposed farm income stabilisation tool by skew normal linear mixed models. Eur. Actuar. J. 4, 383–409 (2014). https://doi.org/10.1007/s13385-014-0097-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13385-014-0097-9

Keywords

Navigation