Skip to main content

Advertisement

Log in

Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

Ebola is a lethal viral hemorrhagic fever with the potential to cause major epidemics. We analyse the 1995 outbreak in the Democratic Republic of Congo using two sets of data (onset and death data). Numerical simulations showed that the model fits the observed onset Ebola data at 99.95% and the observed death data at 98.6%. Since Bayesian inference cannot be performed analytically for complex models, Markov Chain Monte Carlo algorithm is then used as the second approach to obtain a solution. Results obtained from both approaches are contrasted and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bausch D.G., Sprecher A.G., Jeffs B., Boumandouki P.: Treatment of Marburg and Ebola hemorrhagic fevers: A strategy for testing new drugs and vaccines under outbreak conditions. Elsevier ScienceDirect 78, 150–161 (2008)

    Google Scholar 

  2. Bettencourt, L.M.A., Ribeiro, R.M.: Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases. PLoS ONE 3(5), e2185 (2008). doi:10.1371/journal.pone.0002185

  3. Brauer, F., Wu, J., Van den Driessche, P.: Mathematical Epidemiology. Springer, Berlin, ISBN 978-3-540-78910-9 (2008)

  4. Carr J.: Applications Centre Manifold theory. Springer, New York (1998)

    Google Scholar 

  5. Chowell G., Hengartner N.W., Castillo-Chavez C., Fenimore P.W., Hyman J.M.: The basic reproductive number of Ebola and the effects of public health measures: the case of Congo and Uganda. J. Theor. Biol. 229, 119–126 (2004)

    Article  MathSciNet  Google Scholar 

  6. Demiris, N.: Bayesian Inference for Stochastic Epidemic Models using Markov Chain Monte Carlo Methods, thesis for the degree of Doctor of Philosophy, Nottingham (2004)

  7. Guardiola, J., Vecchio, A.: The basic reproduction number for infections dynamics models and the global stability of stationary points, Napoli, Italy (2003)

  8. Haario H., Saksman E., Tamminen J.: An adaptive Metropolis algorithm. Bernouilli 7, 223–242 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Khan A.S., Tshioko K., Heymann D.L., LeGuenno B., Nabeth P., Kerstiens D.L., Fleerackers Y., Kilmarx P.H., Rodier G.R., Nkulu O., Rollin P.E., Sanchez A., Zaki S.R., Swanepoel R., Tomori O., Nichol S.T., Peters C.J., Muyembe-Tamfum J.J., Ksiazek T.G.: The re-emergence of Ebola hemorrhagic fever, Democratic Republic of the Congo, 1995. J. Infect. Dis. 179, 79–86 (1999)

    Article  Google Scholar 

  10. Kuhn, J.H.: Filoviruses: A compendium of 40 years of Epidemiologycal, Clinical, and Laboratory Studies, ISBN 978-3-211-20670-6 Springer, pp. 60–64 (2008)

  11. Laine, M.: Adaptive MCMC Methods with Applications in Environmental and Geophysical Models, Ph.D. Thesis, Helsinki, ISBN 978-951-697-662-7 (2008)

  12. Lekone P., Finkenstädt B.: Statistical inference in a stochastic epidemic SEIR model with control intervention: Ebola as a case study. Biometrics 62, 1170–1177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Leroy, EM., Rouquet, P., Formenty, P., Souquiere, S., Kilbourne, A., Froment, JM, Bermojo, M., Smit, S., Kareh, W., Swanepoel, R., Zaki, S.R., Rollin, P.E.: Multiple Ebola Virus transmission Events and Rapid Decline of Central African Wildlife, Science 303 (2004)

  14. Morgan, B.J.T.: Applied Stochastic Modelling. Oxford University Press Inc., New York, ISBN 0340 74041 8 (2000)

  15. Murray, J.D.: Mathematical Biology I: An introduction, 3rd edn. Springer, pp. 315–393 (2002)

  16. Pourrut, X., Kumulungui, B., Wittmann, T. Moussavou, AD, Yaba, P., Nkoghe, D., Gonzalez, JP, Leroy, EM: The natural history of Ebola Virus in Africa. Microbes Infect 7, 1005–1014, Elsevier (2005)

    Google Scholar 

  17. Robert, P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York, chapters 1-10, ISBN 0-387-21239-6 (2004)

  18. Ryan, C.W. Hall, M.D., Richard, C.W. Hall, M.D., Marcia J. Chapman: The 1995 Kikwit Ebola outbreak: lessons hospitals and physicians can apply to future viral epidemics. J. Gen. Hosp. Psychiatry 30, 446–452, ScienceDirect, Elsevier (2008)

  19. The World Health Organization (WHO). The world health report, 2007. (2007). Available at: http://www.who.int/whr/2007/whr07-en.pdf (accessed on November 2, 2008)

  20. The World Health Organization Report. Ebola Outbreak Chronology (2004). Available at: http://www.who.int/mediacentre/factsheets/fs103/en/index1.html (accessed on November 4, 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ndanguza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ndanguza, D., Tchuenche, J.M. & Haario, H. Statistical data analysis of the 1995 Ebola outbreak in the Democratic Republic of Congo. Afr. Mat. 24, 55–68 (2013). https://doi.org/10.1007/s13370-011-0039-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13370-011-0039-5

Keywords

Mathematics Subject Classification (2000)

Navigation