Skip to main content
Log in

Enhanced Evaporation of Droplet of Ternary Component Under the Effect of Thermo-physical and Transport Properties Variability

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work simulates the heat and mass transfer of the fuel droplets evaporated in a hot medium. The proposed model includes the vaporization of multi-component fuel droplet, in laminar forced convection. The results show that the various components, of different molecular weights, vaporize at different temperatures. Furthermore, the non-miscibility of the mixture of the hydrocarbons liquid droplet is observed. The profile of the regression of the droplet square diameter does not follow the \(d^{2}\) law and presents three evaporation rates rather than a single one. New correlations for the evaporation rate versus Reynolds and Schmidt numbers are proposed for different air velocities, different initial droplet radii, and different initial mass fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Spalding number

\(C_{p}\) :

Specific heat (\(\hbox {J}\,\hbox {kg}^{-1}\,\hbox {K}^{-1}\))

D :

Diffusion coefficient (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

d :

Droplet diameter (m)

K :

Evaporation rate (\(\hbox {mm}^{2}\,\hbox {s}^{-1}\))

\({<}{K}{>}\) :

Average evaporation rate (\(\hbox {mm}^{2}\,\hbox {s}^{-1}\))

L :

Latent heat (\(\hbox {J\,kg}^{-1}\))

M :

Molar mass (\(\hbox {kg\,kmol}^{-1}\))

Nu :

Nusselt number

P :

Pressure (atm)

Pr :

Prandtl number

r :

Droplet radius (m)

Re :

Reynolds number

Sc :

Schmidt number

Sh :

Sherwood number

t :

Time (s)

T :

Temperature (K)

u :

Air velocity (\(\hbox {m\,s}^{-1}\))

Y :

Mass fraction

\(\eta \) :

\(r/r_{s}\)

\(\lambda \) :

Thermal conductivity (\(\hbox {W\,m}^{-1}\,\hbox {K}^{-1}\))

\(\rho \) :

Density (\(\hbox {kg\,m}^{-3}\))

a :

Air

crit :

Critical

f :

Fuel

ebn :

Boiling

fT :

Heat transfer limit

fM :

Mass transfer limit

g :

Gas

i :

Component

L :

Liquid

l :

Liquid

M :

Mass

s :

Surface

T :

Thermal

VS :

Saturated vapor

v :

Vapor

\(\infty \) :

Ambient medium

0:

Initial

*:

Defined

References

  1. Dgheim, J.; Abdallah, M.; Habchi, R.; Zakhia, N.: Heat and mass transfer investigation of rotating hydrocarbons droplet which behaves as a hard sphere. Appl. Math. Model. 36, 2935–2946 (2011)

    Article  Google Scholar 

  2. Sazhin, S.S.: Advanced models of fuel droplet heating and evaporation. Prog. Energy Combust. Sci. 32, 162–214 (2006)

    Article  Google Scholar 

  3. Dgheim, J.; Abdallah, M.; Nasr, N.: Evaporation phenomenon past a rotating hydrocarbon droplet of ternary components. Int. J. Heat Fluid Flow 42, 224–235 (2013)

    Article  Google Scholar 

  4. Dgheim, J.; Abdallah, M.; Zakhia, N.; Nasr, N.: Physical parameters effects on multicomponent hydrocarbon droplet evaporation. J. Energy Heat Mass Transf. 35, 1–19 (2013)

  5. Mattila, T.; Kulmala, M.; Vesala, T.: On the condensational growth of a multicomponent droplet. J. Aerosol Sci. 28, 553–564 (1997)

    Article  Google Scholar 

  6. Continillo, G.; Sirignano, W.A.: Numerical study of multicomponent fuel spray flame propagation in a spherical closed volume. In: 22th International Symposium on Combustion. The Combustion Institute, Pittsburgh (1998)

  7. Cho, S.Y.; Dryer, F.L.: A numerical study of the unsteady burning behavior of n-heptane droplets. Combust. Theory Model. 3, 267–280 (1999)

    Article  MATH  Google Scholar 

  8. Bouaziz, M.; Dgheim, J.; Bresson, J.; Zeghmati, B.: Experimental and numerical study of temperature evolution in evaporation of hydrocarbon droplet. J. Energy Heat Mass Transf. 23, 251–263 (2001)

    Google Scholar 

  9. Merouane, H.; Bounif, A.: Theoretical and numerical analysis of fuel droplet vaporisation at high temperatures. Wseas Trans. Heat Mass Transf. 5(4), 189–196 (2010)

    Google Scholar 

  10. Aharon, I.; Shaw, B.D.: Estimates of liquid species diffusivities from experiments on reduced gravity combustion of heptane-hexadecane droplets. Combust. Flame 113, 507–518 (1998)

    Article  Google Scholar 

  11. Sazhin, S.S.; Elwardany, A.; Krutitskii, P.A.; Castanet, G.; Lemoine, F.; Sazhina, E.M.; Heikal, M.R.: A simplified model for bi-component droplet heating and evaporation. Int. J. Heat Mass Transf. 53, 4495–4505 (2010)

    Article  MATH  Google Scholar 

  12. Megaridis, M.C.: Liquid-phase variable property effects in multicomponent droplet convective evaporation. Combust. Sci. Technol. 92, 291–311 (1993)

    Article  Google Scholar 

  13. Ammigan, K.; Miller, R.S.; Clack, H.L.: Vaporization of bicomponent droplets exposed to asymmetric radiant heating. Combust. Sci. Technol. 183, 1412–1432 (2011)

    Article  Google Scholar 

  14. Xu, G.; Ikegami, M.; Honma, S.; Ikeda, K.; Dietrich, D.L.; Struk, P.M.: Interactive influences of convective flow and initial droplet diameter on isolated droplet burning rate. Int. J. Heat Mass Transf. 47, 2029–2035 (2004)

    Article  Google Scholar 

  15. Xu, G.; Ikegami, M.; Honma, S.; Ikeda, K.; Ma, X.; Nagaishi, H.; Dietrich, D.L.; Struk, P.M.: Inverse influence of initial diameter on droplet burning rate in cold and hot ambiences: a thermal action of flame in balance with heat loss. Int. J. Heat Mass Transf. 46, 1155–1169 (2003)

    Article  Google Scholar 

  16. Abramzon, B.; Sirignano, W.A.: Approximate theory of a single droplet vaporization in a convective field: effects of variable properties, stefan flow and transient liquid heating. In: Proceedings and ASME6JSME, Thermal Engineering Joint Conference, Honolulu, Hawaii (1987)

  17. Dgheim, J.; Zeghmati, B.: Heat and mass transfer investigation of hydrocarbon droplet evaporation under rotatory movement. J. Chin. Phys. Lett. 22, 2933–2936 (2005)

    Article  Google Scholar 

  18. Renksizbulut, M.; Yuen, M.C.: Numerical study of droplet evaporation in a high temperature stream. J. Heat Transf. 105, 389–397 (1983)

    Article  Google Scholar 

  19. Lieberam, A.: VDI, Verlag GmbH, Dusseldorf, Leverkusen, Dc 1 to Dc 38 (1993)

  20. Mauduit, J.: Contribution à l’étude théorique de la vaporisation et de la combustion de gouttes isolées. Introduction aux effets des hautes pressions, Thesis, Orleans University (1992)

  21. Stein, F.P.; Miller, E.J.: Ind. Eng. Chem. Proc. Des. Dev. 19, 123–128 (1980)

    Article  Google Scholar 

  22. Nomura, H.; Ujiie, Y.; Rath, H.J.; Sato, J.; Kono, M.: Experimental study on high-pressure droplet evaporation using microgravity conditions. Int. Proc. Combust. Inst. 26, 1267–1273 (1996)

    Article  Google Scholar 

  23. Chauveau, C.; Halter, F.; Lalonde, A.; Gokalp, I.: An experimental study on the droplet vaporization: effects of heat conduction through the support fiber. Int. ILASS, number 4-1, Como Lake, Italy (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dgheim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dgheim, J., Abdallah, M. & Nasr, N. Enhanced Evaporation of Droplet of Ternary Component Under the Effect of Thermo-physical and Transport Properties Variability. Arab J Sci Eng 43, 2181–2194 (2018). https://doi.org/10.1007/s13369-017-2561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2561-8

Keywords

Navigation