Skip to main content

Advertisement

Log in

Thermodynamic Optimization of New Combined Gas/Steam Power Cycles with HRSG and Heat Exchanger

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, energy and exergy analyses for four configurations, simple gas turbine, steam bottoming cycle with heat recovery steam generator, heat exchanger and secondary bottoming cycle, are performed. The waste heat from the turbine exhaust is utilized in order to optimize the efficiency and output of a simple gas turbine cycle. The combined cycle efficiencies and exergy destruction for each configuration have been analyzed parametrically by using first and second laws of thermodynamics. The effects of the pressure ratio and turbine inlet temperatures on the specific fuel consumption, net output power, energy and exergy efficiencies and the exergy destruction of the plant are investigated in this study. It is demonstrated that the maximum output of the plant increases up to 32.1% when TIT \(=\) 1500 K and up to 19.3% when TIT \(=\) 2000 K as we go from conventional gas turbine cycle to SBC with HRSG, HX and secondary bottoming cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalina, A.I.: Combined-cycle system with novel bottoming cycle. Trans. ASME J. Eng. Gas Turbines Power 106(4), 737–742 (1984)

    Article  Google Scholar 

  2. Frost, T.H.; Anderson, A.; Agnew, B.: A hybrid gas turbine cycle (Brayton/Ericsson): an alternative to conventional combined gas and steam turbine power plant. Proc. Inst. Mech. Eng. Part A (J. Power Energy) 211(A2), 121–131 (1997)

    Article  Google Scholar 

  3. Najjar, Yousef S.H.: Gas turbine cogeneration systems: a review of some novel cycles. Appl. Therm. Eng. 20(2), 179–197 (2000)

    Article  Google Scholar 

  4. Ishida, M.; Hongguang, J.: Fundamental study on a novel gas turbine cycle. Trans. ASME J. Energy Resour. Technol. 123(1), 10–14 (2001)

    Article  Google Scholar 

  5. Riaz, M.S.; Barb, K.J.; Engeda, A.: A novel technique for steam turbine exhaust pressure limitation using dynamic pressure sensors. Proc. Inst. Mech. Eng. Part C (J. Mech. Eng. Sci.) 219(C9), 925–932 (2005)

    Article  Google Scholar 

  6. Wu, C.; Tsai, J.-S.: Thermodynamic analysis of mirror gas turbine cycle. Int. J. Power Energy Syst. 26(2), 153–156 (2006)

    Google Scholar 

  7. Shalan, H.E.M.A.; Moustafa Hassan, M.A.; Bahgat, A.B.G.: Comparative study on modelling of gas turbines in combined cycle power plants. In: Proceedings of the 14th International Middle East Power Systems Conference (MEPCON’10), December 19–21, 2010. Cairo University

  8. Bassily, A.: The application of novel techniques for gas turbine inlet-cooling that improve both the power and efficiency of the modern commercial steam-air-cooled gas turbine combined cycle power plants in hot and humid climates. Proc. Inst. Mech. Eng. Part A (J. Power Energy) 229(4), 406–430 (2015)

    Article  Google Scholar 

  9. Kumar, A.; Kachhwaha, S.S.; Mishra, R.S.: Steady state thermal analysis of gas turbine power plant cycles at higher temperatures. Indian J. Sci. Ind. Res. 74, 52–57 (2015)

    Google Scholar 

  10. Dellenback, P.A.: Improved gas turbine efficiency through alternative regenerator configuration. Trans. ASME J. Eng. Gas Turbines Power 124(3), 441–446 (2002)

    Article  Google Scholar 

  11. Ravi Kumar, N.; Rama Kirishna, K.; Sita Rama Raju, A.V.: Exergy analysis of gas turbine power plant with alternative configuration of regenerator. In: Proceedings 2nd International Exergy Energy Environment Symposium (IEEES2): VI-13. Kos (2005)

  12. Kumar. R.N.; Raju. S.; Rama. A.V.: The study of the effects of gas turbine inlet cooling on plant and HRSG performance. In: Proceedings, National Conference on Advances in Mechanical Engineering (AIM-2005), Hyderabad (2005)

  13. Ong’iro, A.; Ugursal, V.I.; A1 Taweel, A.M.; Walker, J.D.: Modeling of heat recovery steam generator performance. Appl. Therm. Eng. 17(5), 427–446 (1997)

  14. Nag, P.K.; De, S.: Design and operation of a heat recovery steam generator with minimum irreversibility. Appl. Therm. Eng. 17(4), 385–391 (1997)

    Article  Google Scholar 

  15. Casarosa, C.; Franco, A.: Thermodynamic optimization of the operative parameters for the heat recovery in combined power plants. Int. J. Appl. Thermodyn. 4(1), 43–52 (2000)

    Google Scholar 

  16. Salvi, D.; Pierpaoli, P.: Optimization of inlet air cooling systems for steam injected gas turbines. Int. J. Therm. Sci. 41(9), 815–822 (2002)

    Article  Google Scholar 

  17. Chuang, C.; Sue, D.: Performance effects of combined cycle power plant with variable condenser pressure and loading. Energy 30, 1793–1801 (2005)

    Article  Google Scholar 

  18. AL-Hawaj, O.M.; AL-Mutairi, H.A.: combined work cycle with absorption air conditioning. Energy 32, 971–982 (2007)

    Article  Google Scholar 

  19. Xiang, W.; Chen, Y.: Performance improvement of combined cycle work plant based on the optimization of the bottom cycle and heat recuperation. J. Therm. Sci. 16(1), 84–89 (2007)

    Article  Google Scholar 

  20. Polyzakis, A.L.; Koroneos, C.; Xydis, G.: Optimum gas turbine cycle for combined cycle power plant. Energy Convers. Manag. 49(4), 551–563 (2008)

    Article  Google Scholar 

  21. Khaliq, A.: Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. Int. J. Refrig. 32(3), 534–545 (2009)

    Article  Google Scholar 

  22. Khaliq, A.; Choudhary, K.; Dincer, I.: Exergy analysis of a gas turbine trigeneration system using the Brayton refrigeration cycle for inlet air cooling. Proc. Inst. Mech. Eng. Part A (J. Power Energy) 224(A4), 449–461 (2010)

    Article  Google Scholar 

  23. Ashley, D.S.; Zubaidy, S.A.: Gas turbine performance at varying ambient temperature. Appl. Therm. Eng. 31, 2735–2739 (2011)

    Article  Google Scholar 

  24. Ibrahim, T.K.; Rahman, M.M.; Abdalla, A.N.: Gas turbine configuration for improving the performance of combined cycle power plant. Procedia Eng. 15, 4216–4223 (2011)

    Article  Google Scholar 

  25. Ibrahim, T.K.; Rahman, M.M.: Thermal impact of operating conditions on the performance of a combined cycle gas turbine. J. Appl. Res. Technol. 10, 567–577 (2012)

    Google Scholar 

  26. Kotas, T.J.: The Exergy Method of Thermal Plant Analysis. Butterworth Publishers, Stoneham (1985)

    Google Scholar 

  27. Dincer, Ibrahim; Rosen, Marc A.: Exergy, Energy, Environment and Sustainable Development. Elsevier, Amsterdam (2007)

    Google Scholar 

  28. Zhu, S.; Deng, K.; Qu, S.: Energy and exergy analyses of a bottoming Rankine cycle for engine exhaust heat recovery. Energy 58, 448–457 (2013)

    Article  Google Scholar 

  29. Bejan, A.: Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energy Res. 26, 545–565 (2002)

    Google Scholar 

  30. Sanjay, Prasad B.N.: Energy and exergy analysis of intercooled combustion-turbine based combined cycle power plant. Energy 59, 277–284 (2013)

  31. Tiwari, A.K.; Hasan, M.M.; Islam, M.: Exergy analysis of combined cycle power plant: NTPC Dadri, India. Int. J. Thermodyn. (IJoT) 16(1), 36–42 (2013)

    Google Scholar 

  32. Ghazikhani, M.; Passandideh-Fard, M.; Mousavi, M.: Two new high-performance cycles for gas turbine with air bottoming. Energy 36(1), 294–304 (2011)

    Article  Google Scholar 

  33. Ghazikhani, M.; Khazaee, I.; Abdekhodaie, E.: Exergy analysis of gas turbine with air bottoming cycle. Energy 72, 599–607 (2014)

    Article  Google Scholar 

  34. Carcasci, C.; Costanzi, F.; Pacifici, B.: Performance analysis in off-design condition of gas turbine air-bottoming combined system. Energy Procedia 45, 1037–1046 (2014)

    Article  Google Scholar 

  35. Singh, S.; Agarwal, O.; Rajay, M.: Energy and exergy analysis of Brayton–Brayton hybrid cycle for power plant applications. Eng. Lett. 22(4), 215 (2014)

    Google Scholar 

  36. Naradasu, R.K.; Konijeti, R.K.; Raju, Venkata Alluru S.R.: Thermodynamic analysis of heat recovery steam generator in combined cycle power plant. Therm. Sci. 11(4), 143–156 (2007)

    Article  Google Scholar 

  37. Tiwari, A.K.; Islam, Mohd; Khan, M.N.: Thermodynamic analysis of combined cycle power plant. Int. J. Eng. Sci. Technol. 2(4), 480–491 (2010)

    Google Scholar 

  38. Chmielniak, T.; Czaja, D.; Lepszy, S.; Stępczyńska-Drygas, K.: Thermodynamic and economic comparative analysis of air and steam bottoming cycle. Energy 92(2), 189–196 (2015)

    Article  Google Scholar 

  39. Bolland, O.; Forde, M.; Hande, B.: Air bottoming cycle: use of gas turbine waste heat for power generation. J Eng Gas Turbines Power 118(2), 359–368 (1996)

    Article  Google Scholar 

  40. Alklaibi, A.M.; Khan, M.N.; Khan, W.A.: Thermodynamic analysis of gas turbine with air bottoming cycle. Energy 107(15), 603–611 (2016)

    Article  Google Scholar 

  41. Moran, M.J.; Shapiro, H.N.: Fundamentals of Engineering Thermodynamics, 5th edn. Wiley, Hoboken (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. A. Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.N., Tlili, I. & Khan, W.A. Thermodynamic Optimization of New Combined Gas/Steam Power Cycles with HRSG and Heat Exchanger. Arab J Sci Eng 42, 4547–4558 (2017). https://doi.org/10.1007/s13369-017-2549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2549-4

Keywords

Navigation