Skip to main content
Log in

Review of Non-Destructive Tests for Evaluation of Historic Masonry and Concrete Structures

  • Review Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The paper discusses non-destructive tests (NDTs) useful for condition evaluation of old structures and historic monuments based on a review of available literature. The application of these tests for the evaluation of various structures constructed of stone or brick masonry or reinforced cement concrete has been discussed. The types of defects present in structures built of different material media vary greatly. Therefore, it has been recognized that not all NDT methods or all combinations of NDT methods can be used for all structures. Further, the type and degree of a structural defect is a function of the environment the structure is subjected to. Because of the great amount of research which has been recently conducted in this field, general parameters which could be identified by various NDT techniques for various building materials and the advantages and disadvantages of each technique need to be identified. The authors have been able to achieve this by means of a literature survey. The authors have also discussed a number of national and international standards (codes) established by technical societies as standard guidelines for application of NDT techniques. A few abnormalities in this regard have also been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gamidi, S.H.: Non Destructive Testing of Structures. Dissertation, Indian Institute of Technology, Bombay (2009)

  2. Balayssac, J.P.; Andrade, C.; Monteiro, J.S.; Scheel, H.: Ruptures of prestressing cables. In: Breysse, D. (ed.) Non Destructive Testing of Concrete Structures: Reliability and Limits of Single and Advanced Techniques. Springer, Talence (2012)

    Google Scholar 

  3. Wiggenhauser, H.: Advanced NDT methods for the assessment of concrete structures. In: Alexander, M.G., et al. (eds.) Concrete Repair, Rehabilitation and Retrofitting, 2nd International Conference on Concrete Repair, pp. 19–30. Taylor and Francis Group, London (2009)

    Google Scholar 

  4. Dinh, K.; Zayed, T.: Correlation based model for evaluating ground penetration radar (GPR) data of concrete bridge decks. In: Proceedings of the 30th IAARC, Montreal, Canada. IAARC (2013)

  5. Bodare, A.: Non Destructive Test Methods of Stone and Rock. Department of Civil and Environmental Engineering Division of Soil and Rock Mechanics. Sweden; Report of Geophysical and Civil Engineering NDT method, Royal Institute of Technology, Stockholm (1994)

  6. Svahn, H.: Non-Destructive Field Tests in Stone Conservation: Final Report for the Research and Development Project: Literature Study. Riksantikvarieämbetet (2006)

  7. Binda, L.; Saisi, A.; Tiraboschi, C.: Investigation procedures for the diagnosis of historic masonries. Constr. Build. Mater. 14(4), 199–233 (2000)

    Article  Google Scholar 

  8. McCann, D.M.; Forde, M.C.: Review of NDT methods in the assessment of concrete and masonry structures. NDT & E Int. 34(2), 71–84 (2001)

    Article  Google Scholar 

  9. Schubert, F.; Bernd, K.: Ten lectures on impact-echo. J. Nondestruct. Eval. 27(1–3), 5–21 (2008)

    Article  Google Scholar 

  10. Carino, N.J.: The impact-echo method: an overview. In: Proceedings of the 2001 Structures Congress and Exposition (2001)

  11. Lombillo, I.; Thomas, C.; Villegas, L.; Fernández-Álvarez, J.P.; Norambuena-Contreras, J.: Mechanical characterization of rubble stone masonry walls using non and minor destructive tests. Constr. Build. Mater. 43, 266–277 (2013)

    Article  Google Scholar 

  12. Jording, A.C.: Damage Detection in Metamorphic Stone Blocks Utilizing Impact-echo Testing and Modal Analysis. Dissertation, University of Nebraska, Nebraska (2012)

  13. Sonatest: Couplant. http://sonatest.com/products/range/couplant. Accessed 2016

  14. NDT: Ultrasonic Couplants. http://www.ndt.it/uk/couplants.asp. Accessed 2016

  15. Mistras: Ultrasonic Testing. http://www.mistrasgroup.com/services/traditionalndt/ut.aspx. Accessed 2016

  16. Carino, N.J.: Nondestructive test methods. In: Nawy, E.G. (ed.) Concrete Construction Engineering Handbook, vol. 1, pp. 19/1–68. CRC Press, Boca Raton (2001)

  17. Hanazato, T.; Tanaka, H.; Kusagaya, T.; Okamoto, Y.: Muon radiography monitoring for structural survey of the Prambanan World Heritage Temple. In: Japan Geoscience Union Meeting, Pacifico Yokohoma, Kangawa, Japan (2014)

  18. Prasad, J.; Nair, C.J.K.: Non Destructive Test and Evaluation of Materials. Third Reprint, McGraw Hill Education Private Limited, India (2014)

    Google Scholar 

  19. Akevren, S.: Non Destructive Examination of Stone Masonry Historic Structures—Quantitative IR Thermography and Ultrasonic Testing. Dissertation, The Graduate School of Natural Applied Sciences of Middle East University, Beirut, Lebanon (2010)

  20. Collins, D.J.: Damage Detection in Composite Materials Using Acoustic Emission and Self-Sensing Fibres. Dissertation, University of Birmingham, UK (2010)

  21. The University of Texas at San Antonio. http://www.utsa.edu/ccs/pdf/AlamoInfraredReport.pdf. Accessed 2016

  22. Aad, G.; Abbott, B.; Abdallah, J.; Khalek, S.A.; Abdinov, O.; Aben, R.; Abi, B.; et al.: Search for the BB decay of the standard model Higgs Boson in associated (W/Z) H production with the ATLAS detector. J. High Energy Phys. 1, 1–89 (2015)

    Google Scholar 

  23. Martinez-Martinez, J.; Fusi, N.; Barberini, V.; Canaveras, J.C.; Crosta, G.B.: X-Ray microtomography for studying 3D-textures of speleothems developed inside historic wall. Revista de la Sociedad Espanola de Mineralogia 13, 145–146 (2010)

    Google Scholar 

  24. De Clercq, H.; Hayen, R.; Cnudde,V.; Boone, M.; Dusar, M.: Dam-age assessment of ferruginous sandstone by X-ray tomography— the Virgin Tower of Zichem (Belgium). In: Proceeding of the 12th International Conference on the Deterioration and Conservation of Stone, Columbia University, New York, USA (2012)

  25. Heritage Council State Heritage Office. http://www.stateheritage.wa.gov.au/docs/maintenance-series/cleaning-stone-masonry.pdf?sfvrsn=8. Accessed 2016

  26. Atkinson, R.H.; Noland, J.L.; Kingsley, G.R.: Application of NDE to masonry structures; current technology and future needs. Rev. Prog. Quant. Nondestruct. Eval. 9, 1927–1934 (1990)

    Google Scholar 

  27. Li, Z.; Shah, S.P.: Localization of microcracking in concrete under uniaxial tension. Mater. J. 91(4), 372–381 (1994)

    Google Scholar 

  28. Masonry Construction. http://www.masonryconstruction.com/Images/Evaluating%20In-Place%20Strength_tcm68-1374704.pdf. Accessed 2015

  29. Brozovsky, J.; Zach, J.; Brozovsky Jr., J.: Gypsum Free Cements and Concretes Made with them: Strength Determination Using Nondestructive Testing Methods. http://www.ndt.net/article/panndt2007/papers/2.pdf (2007). Accessed 2015

  30. Brozovsky, J.: Calcium silicate bricks-ultrasonic pulse method: effects of natural frequency of transducers on measurement on measurement results. Int. J. Civ. Environ. Struct. Constr. Arch. Eng. 8(9), 971–974 (2014)

    Google Scholar 

  31. Harvey Jr., D.W.; Michael, P.S.: Nondestructive Evaluation: Structural Performance of Masonry. Practice Points 09 (2010)

  32. Kaplan, M.E.; Marie Ennis, P.E.; Meade, P.E.: Non Destructive Evaluation Techniques for Masonry Construction. Technical Note, U.S. Department of the Interior National Park Service Cultural Resources (1997)

  33. Brencich, A.; Sterpi, E.: Compressive strength of solid clay brick masonry: calibration of experimental tests and theoretical issues. In: Laurenco, P.B.; Roca, P.; Modena, C.; Agrawal, S. (eds.) Structural Analysis of Historical Construction, pp. 1–8. Macmillan, New Delhi (2006)

  34. Nikzad, S.; Kari, B.M.; Tahmadebi, F.: The Application of Thermal Imaging as a Non-Destructive Test in Historic Buildings. In: International Conference on Durability of Building Materials and Components (2011)

  35. Meola, C.: Infrared thermography in architectural field. Sci. World J. 2013, 1–8 (2013)

    Article  Google Scholar 

  36. Plesu, R.; Teodoriu, G.; Taranu, G.: Infrared thermography applications for building investigation. Buletinul Institutului Politehnic Din Lasi. Sectia Constructii, Arhitectura 58(1), 157 (2012)

  37. Maierhofer, C.; Leipold, S.: Radar investigation of masonry structures. NDT & E Int. 34(2), 139–147 (2001)

    Article  Google Scholar 

  38. Hamrouche, R.; Klysz, G.; Balayssac, J.P.; Laurens, S.; Rhazi, J.; Ballivy, G.; Arliguie, G.: Numerical Modeling Of Ground-Penetrating Radar (GPR) for The Investigation Of Jointing Defects in Brick Masonry Structures. In: Non-Destructive Testing in Civil Engineering, NDTCE’09, Nantes, France (2009)

  39. Assuncao, S.S.; Perez-Gracia, V.; Caselles, O.; Clapes, J.; Salina, V.: Assesment of complex masonry structures with GPR compared to other non-destructive testing studies. Remote Sens. 6, 8220–8237 (2014)

    Article  Google Scholar 

  40. Hanna, W.F.; Petrone, C.E.: Ground Penetrating Radar (GPR) and Electromagnetic Induction (EMI) Surveys Mason Family Cemetery Area. http://www.gunstonhall.org/docs/GunstonHall-GPR-Burying-Ground-Report.pdf (2007). Accessed 2015

  41. Clark, M.R.; McCann, D.M.; Forde, M.C.: GPR as a tool for the characterisation of ballast. In: Proceedings of the International Conference And Exhibition Railway Engineering, London (2003)

  42. Public Works Department, Bangladesh. http://pwd.gov.bd/document/library/RevRpt_4_Corrosion_of_steel.pdf. Accessed 2015

  43. Sintef. http://www.sintef.no/globalassets/upload/byggforsk/publikasjoner/prosjektrapport110.pdf. Accessed 2015

  44. Do, C.T.; Bentz, D.P.; Stutzman, P.E.: Microstructure and thermal conductivity of hydrated calcium silicate board materials. J. Build. Phys. 31(1), 55–67 (2007)

    Article  Google Scholar 

  45. Stalite. www.stalite.com/uploads/Improved_Chloride_Resistance.pdf. Accessed 2016

  46. Elsener, B.; Andrade, C.; Gulikers, J.; Polder, R.; Raupach, M.: Hall-cell potential measurements-potential mapping on reinforced concrete structures. Mater. Struct. 36(7), 461–471 (2003)

    Article  Google Scholar 

  47. Newtson, C.M.; Bola, M.M.: Field evaluation of corrosion in reinforced concrete structures in marine environment. Research Report, University of Hawaii, Honolulu (2000)

  48. Chansuriyak, K.: Effect of Concrete Properties and Exposing Conditions on Half Cell Potential Measurement. Dissertation, Thammasat University, Bangkok, Thailand (2010)

  49. Candel, F.R.: Methods and Equipment for Non Destructive Testing of Reinforced Concrete in Harbour Docks. Dissertation, Chalmers University of Technology, Goteborg, Sweden (2010)

  50. Song, G.; Shayan, A.: Corrosion of Steel in Concrete: Causes. Detection and Prediction. Australian Road Research Board, Vermont South, Victoria, Melbourne (1998)

    Google Scholar 

  51. Verma, S.; Bhadouria, S.S.; Akhtar, S.: Review of nondestructive testing methods for condition monitoring of concrete structures. J. Constr. Eng. 2013, 1–11 (2013)

    Article  Google Scholar 

  52. Savaliya, K.D.; Thaker, K.K.; Dave, U.V.: Comparison between different methods of ultrasonic pulse velocity tests on concrete. Int. J. Eng. Res. Appl. 4(2), 41–44 (2014)

    Google Scholar 

  53. Jones, R.; Facaoaru, I.: Recommendations for testing concrete by ultrasonic pulse method. Mater. Constr. 2(10), 275–283 (1969)

    Article  Google Scholar 

  54. Epasto, G.; Proverbio, E.; Venturi, V.: Evaluation of fire-damaged concrete using impact-echo method. Mater. Struct. 43(1–2), 235–245 (2010)

    Article  Google Scholar 

  55. Zhu, J.; Popovics, J.S.: Imaging concrete structures using air-coupled impact-echo. J. Eng. Mech. 133(6), 628–640 (2007)

    Article  Google Scholar 

  56. Breyse, D.: Non Destructive Assessment of Concrete Structure: Reliability and Limits of Single and Combined Techniques. Springer, Berlin (2014)

    Google Scholar 

  57. Brencich, A.; Cassini, G.; Pera, D.; Riotto, G.: Calibration and reliability of the rebound (Schmidt) Hammer test. Civ. Eng. Arch. 1(3), 66–78 (2013)

    Google Scholar 

  58. Gehrig, M.D.; Morris, D.V.; Bryant, J.T.: Ground penetrating radar for concrete evaluation studies. Technical Presentation Paper for Performance Foundation Association, pp. 197–200 (2004)

  59. Rao, P.: Infrared thermography and its applications in civil engineering. Indian Concr. J. 82(5), 41–50 (2008)

    Google Scholar 

  60. He, X.Q.; Zhu, Z.Q.; Liu, Q.Y.; Lu, G.Y.: Review of GPR Rebar Detection. In: PIERS Proceedings, pp. 804–813 (2009)

  61. Hugenschmidt, J.: Geophysics and Non-Destructive Testing for Transport Infrastructure, With Special Emphasis on Ground Penetrating Radar. Dissertation, Eidgenössische Technische Hochschule ETH Zürich (2010)

  62. Bagavathiappan, S.; Lahiri, B.B.; Saravanan, T.; Philip, J.; Jayakumar, T.: Infrared thermography for condition monitoring-a review. Infrared Phys. Technol. 60, 35–55 (2013)

  63. Clark, M.R.; McCann, D.M.; Forde, M.C.: Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT & E Int. 36(4), 265–275 (2003)

    Article  Google Scholar 

  64. Maierhofer, C.; Arndt, R.; Röllig, M.: Influence of concrete properties on the detection of voids with impulse-thermography. Infrared Phys. Technol. 49(3), 213–217 (2007)

    Article  Google Scholar 

  65. Pringle, J. K.; Clark, J.D.; Westerman, A.R.; Gardiner, A.R.: The use of GPR to image three-dimensional (3-D) turbidite channel architecture in the Carboniferous Ross Formation, County Clare, western Ireland. Geological Society, London, Special Publications 211.1, pp. 315–326 (2003)

  66. Islam, M.N.; Alam, M.K.; Zaman, M.A.; Ahsan, M.H.; Molla, N.I.: Application of neutron radiography to building industries. Indian J. Pure Appl. Phys. 38(5), 348–354 (2000)

    Google Scholar 

  67. Pugliesi, R.; Andrade, M.L.G.: Study of cracking in concrete by neutron radiography. Appl. Radiat. Isotopes 48(3), 339–344 (1997)

    Article  Google Scholar 

  68. Ukrainczyk, N.; Ukrainczyk, M.; Šipušić, J.; Matusinović, T.: XRD and TGA investigation of hardened cement paste degradation. In: International Conference on Materials, Processes, Friction and Wear MATRIB’06 (2006)

  69. Matsumoto, M.; Mitani, K.; Catbas, F.N.: Bridge assessment methods using image processing and infrared thermography technology: on-site pilot application in Florida. In: Transportation Research Board 92nd Annual Meeting. Washington, DC (2013)

  70. Bukowski, M.E.; Tucker, R.L.; Fowler. D.W.: Detection of Voids underneath Concrete Pavements using Infrared Thermography. Center for Transportation Research, The University of Texas, Austin, Texas (1983)

  71. Bolleni, N.K.: Environmental Effects on Subsurface Defect Detection in Concrete Structures using Infrared Thermography. Dissertation, University of Missouri, Columbia (2009)

  72. Hamidian, M.; Shariati, A.; Khanouki, M.A.; Sinaei, H.; Toghroli, A.; Nouri, K.: Application of Schmidt Rebound Hammer and ultrasonic pulse velocity techniques for structural health monitoring. Sci. Res. Essays 7(21), 1997–2001 (2012)

    Google Scholar 

  73. Hannachi, S.; Mohamed, N.G.: Application of the combined method for evaluating the compressive strength of concrete on site. Open J. Civ. Eng. 2(1), 16 (2012)

    Article  Google Scholar 

  74. Almeida, R.: http://www.academia.edu/11793884/Non_Destructive_Testing_for_In_place_strength_of_RC_Structures_by_Combined_Methods. Accessed 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aslam Hussain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, A., Akhtar, S. Review of Non-Destructive Tests for Evaluation of Historic Masonry and Concrete Structures. Arab J Sci Eng 42, 925–940 (2017). https://doi.org/10.1007/s13369-017-2437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2437-y

Keywords

Navigation