Skip to main content
Log in

Removal of Nitrate and Phosphate from Water by Clinoptilolite-Supported Iron Hydroxide Nanoparticle

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, we used clinoptilolite-supported iron hydroxide NPs (\(\hbox {Fe(OH)}_{3}\)/Cp) for evaluating the simultaneous removal of \(\hbox {NO}_{3}^{-}\) and \(\hbox {PO}_{4}^{-3}\). Remediation was investigated in a range of initial concentrations of \(\hbox {NO}_{3}^{-}\) (0–25 mg/L) and \(\hbox {PO}_{4}^{-3}\) (0–25 mg/L) as a function of pH (2–8), nanoparticles concentration (1 and 0.5 g/L). To achieve the best result, the weight ratio of raw material in iron sulfate versus clinoptilolite (5:1, 2:1, 1:1, 2:1) was tested. The highest pollutant removal was obtained 93% for \(\hbox {PO}_{4}^{-3}\) in 5:1 ratio of Fe versus clinoptilolite and 81% for \(\hbox {NO}_{3}^{-}\) in 1:2 ratio of Fe versus clinoptilolite at the pH of 2. Kinetic data for \(\hbox {NO}_{3}^{-}\) and \(\hbox {PO}_{4}^{-3}\) were well fitted in the pseudo-first-order model and pseudo-second-order model, respectively. Based on the results, it may be concluded that \(\hbox {Fe(OH)}_{3}\)/Cp NPs can effectively be used for simultaneous removal of \(\hbox {NO}_{3}^{- }\) and \(\hbox {PO}_{4}^{-3 }\) from water resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Malakouti, M.J.: Sustainable agriculture and increase performance by optimizing fertilizer use in Iran, The Agricultural Education Research, Sana Press, Tehran, Iran, 2005, pp. 220 (in Persian)

  2. Elmi, A.A.; Chandra, M.; Egeh, M.; Liu, A.; Hamel, C.: Environmental and agronomic implications of water table and nitrogen fertilization management. J. Environ. Qual. 31, 1858–1867 (2002)

    Article  Google Scholar 

  3. Boumans, L.J.; Fraters, D.; Van Drecht, G.: Nitrate leaching in agriculture to upper groundwater in the sandy regions of the Netherlands during the 1992–1995 period. Environ. Monit. Assess. 102, 225–241 (2005)

    Article  Google Scholar 

  4. FAO: Current World Fertilizer Trends and Outlook to 2018, Food and Agriculture Organization of the United Nations, Rome (2015)

  5. Salome, G.P.; Soares, E.J.: Activated carbon supported metal catalysts for nitrate and nitrite reduction in water. Catal. Lett. 126, 253–260 (2008)

    Article  Google Scholar 

  6. Fan, A.M.; Steinberg, V.E.: Health implications of nitrate and nitrite in drinking water: an update on methemoglobinemia occurrence and reproductive and developmental toxicity. Regul. Toxicol. Pharmacol. 23, 35–43 (1996)

    Article  Google Scholar 

  7. Nolan, B.T.; Ruddy, B.C.; Hitt, K.J.; Helsel, D.R.: Risk of nitrate in ground waters of the United States a national perspective. Environ. Sci. Technol. 31, 2229–2236 (1997)

    Article  Google Scholar 

  8. Xiong, Z.; Zhao, D.; Pan, G.: Rapid and controlled transformation of nitrate in water and brine by stabilized iron nanoparticles. J. Nanopart. Res. 11, 807–819 (2008)

    Article  Google Scholar 

  9. Blaney, L.M.; Cinar, S.; Sen Gupta, A.K.: Hybrid anion exchanger for trace phosphate removal from water and wastewater. Water Res. 41, 1603–1613 (2007)

    Article  Google Scholar 

  10. Barca, C.; Gérente, C.; Meyer, D.; Chazarenc, F.; Andrès, Y.: Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Res. 46, 2376–2384 (2012)

    Article  Google Scholar 

  11. Bennion, H.; Juggins, S.; Anderson, N.J.: Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environ. Sci. Technol. 30, 2004–2007 (1996)

    Article  Google Scholar 

  12. Chapra, S.C.: Surface Water-Quality Modeling. McGraw-Hill Inc, Singapore (1997)

    Google Scholar 

  13. Park, J.K.; Wang, J.; Novotny, G.: Waste Water Characterization for Evaluation of Biological Phosphorus Removal. Wisconsin, USA (1997)

    Google Scholar 

  14. Taghipour, M.; Jalali, M.: Effect of nanoparticles on kinetics release and fractionation of phosphorus. J. Hazard. Mater. 283, 359–370 (2015)

    Article  Google Scholar 

  15. Windolf, J.; Blicher-Mathiesen, G.; Carstensen, J.; Kronvang, B.: Changes in nitrogen loads to estuaries following implementation of governmental action plans in Denmark: a paired catchment and estuary approach for analyzing regional responses. Environ. Sci. Policy. 24, 24–33 (2012)

    Article  Google Scholar 

  16. Yang, Z.C.; Zhao, N.; Huang, F.; Lv, Y.Z.: Long-term effects of different organic and inorganic fertilizer treatments on soil organic carbon sequestration and crop yields on the North China Plain. Soil Tillage Res. 146, 47–52 (2015)

    Article  Google Scholar 

  17. Zhao, Y.; Wang, J.; Luan, Z.; Peng, X.; Liang, Z.; Shi, L.: Removal of phosphate from aqueous solution by red mud using a factorial design. J. Hazard. Mater. 165, 1193–1199 (2009)

    Article  Google Scholar 

  18. Bekta, N.; Akbulut, H.; Inan, H.; Dimoglo, A.: Removal of phosphate from aqueous solutions by electro-coagulation. J. Hazard. Mater. 106, 101–105 (2004)

    Article  Google Scholar 

  19. Zhang, W.X.: Nanoscale Fe particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323–332 (2003)

    Article  Google Scholar 

  20. Narr, J.; Viraraghavan, T.; Jin, Y.C.: Applications of nanotechnology in water/wastewater treatment: a review. Fresenius Environ. Bull. 16, 320–329 (2007)

    Google Scholar 

  21. Theron, J.; Walker, J.A.; Cloete, T.E.: Nanotechnology and water treatment: applications and emerging opportunities. Crit. Rev. Microbiol. 34, 43–69 (2008)

    Article  Google Scholar 

  22. Chen, S.S.; Hsu, H.D.; Li, C.W.: A new method to produce nanoscale Fe for nitrate removal. J. Nanopart. Res. 6, 639–647 (2004)

    Article  Google Scholar 

  23. Sun, Y.P.; Li, X.Q.; Zhang, W.X.; Wang, H.P.: Characterization of zero-valent Fe nanoparticles. Adv. Colloid Interface Sci. 120, 47–56 (2006)

    Article  Google Scholar 

  24. Cumbal, L.; Greenleaf, J.; Leun, D.; SenGupta, A.K.: Polymer supported inorganic nanoparticles: characterization and environmental applications. React. Funct. Polym. 54, 167–180 (2003)

    Article  Google Scholar 

  25. Nurmi, J.T.; Tratnyek, P.G.; Sarathy, V.; Baer, D.R.; Amonette, J.E.; Pecher, K.: Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221–1230 (2005)

    Article  Google Scholar 

  26. Liu, R.; Zhao, D.: Reducing leachability and bioaccessibilty of lead in soils using a new class of stabilized iron phosphate nanoparticles. Water Res. 41, 2491 (2007)

    Article  Google Scholar 

  27. Arai, Y.; Sparks, D.L.: ATR-FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite-water interface. J. Colloid Interface Sci. 241, 317–326 (2001)

    Article  Google Scholar 

  28. Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T.: Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 298, 602–609 (2006)

    Article  Google Scholar 

  29. Harvey, O.R.; Rhue, R.D.: Kinetics and energetics of phosphate sorption in a multi-component Al(III)–Fe(III) hydr(oxide) sorbent system. J. Colloid Interface Sci. 322, 384–393 (2008)

    Article  Google Scholar 

  30. Zhang, G.S.; Liu, H.J.; Liu, R.P.; Qu, J.H.: Removal of phosphate from water by a Fe–Mn binary oxide adsorbent. J. Colloid Interface Sci. 335, 168–174 (2009)

  31. Long, F.; Gong, J.L.; Zeng, G.M.; Chen, L.; Wang, X.Y.; Deng, J.H.; Niu, Q.Y.; Zhang, H.Y.; Zhang, X.R.: Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem. Eng. J. 171, 448–455 (2011)

    Article  Google Scholar 

  32. Liu, T.; Yang, X.; Wang, Z.L.; Yan, X.: Enhanced chitosan beads-supported \(\text{ Fe }^{0}\)-nanoparticles for removal of heavy metals from electroplating wastewater inpermeable reactive barriers. Water Res. 47, 6691–6700 (2013)

    Article  Google Scholar 

  33. Lu, J.B.; Liu, H.J.; Liu, R.P.; Zhao, X.; Sun, L.P.; Qu, J.H.: Adsorptive removal of phosphate by a nanostructured Fe–Al–Mn trimetal oxide adsorbent. Powder Technol. 233, 146–154 (2013)

    Article  Google Scholar 

  34. Moharami, S.; Jalali, M.: Effect of \(\text{ TiO }_{2}\), \(\text{ Al }_{2}\text{ O }_{3}\), and \(\text{ Fe }_{3}\text{ O }_{4}\) nanoparticles on phosphorus removal from aqueous solution. Environ. Prog. Sustain. Energy 33, 1209–1219 (2014)

    Google Scholar 

  35. Li, G.; Gao, S.; Zhang, G.; Zhang, X.: Enhanced adsorption of phosphate from aqueous solution by nanostructured Fe(III)–copper(II) binary oxides. Chem. Eng. J. 235, 124–131 (2014)

    Article  Google Scholar 

  36. Liou, Y.H.; Lo, S.L.; Lin, C.J.; Kuan, W.H.: Size effect in reactivity of copper nanoparticles to carbon tetrachloride degradation. Water Res. 41, 1705–1712 (2007)

    Article  Google Scholar 

  37. Lee, C.C.; Doong, R.A.: Dechlorination of tetrachloroethylene in aqueous solutions using metal-modified zerovalent silicon. Environ. Sci. Technol. 42, 4752–4757 (2008)

    Article  Google Scholar 

  38. Uzum, C.; Shahwan, T.; Eroglu, A.E.; Eroglu, K.R.; Scott, T.B.; Lieberwirth, I.: Synthesis and characterization of kaolinite-supported zero-valent Fe nanoparticles and their application for the removal of aqueous Cu \(^{2+}\) and Co\(^{2+}\) ions. Appl. Clay Sci. 43, 172–181 (2008)

    Article  Google Scholar 

  39. Liu, F.; Yang, J.H.; Zuo, J.; Ma, D.; Gan, L.; Xie, B.; Wang, P.; Yang, B.: Graphene-supported nanoscale zero-valent Fe: removal of phosphorus from aqueous solution and mechanistic study. J. Environ. Sci. 26, 1751–1762 (2014)

    Article  Google Scholar 

  40. Huang, Y.; Yang, J.K.; Keller, A.A.: Removal of arsenic and phosphate from aqueous solution by metal (hydr-)oxide coated sand. ACS Sustain. Chem. Eng. 2, 1128–1138 (2014)

    Article  Google Scholar 

  41. Xie, J.; Wang, Z.; Wu, D.; Kong, H.: Synthesis and properties of zeolite/hydrated Fe oxide composite from coal fly ash as efficient adsorbent to simultaneously retain cationic and anionic pollutants from water. Fuel 116, 71–76 (2014)

    Article  Google Scholar 

  42. Birks, L.; Friedman, H.: Particle size determination from X-ray line broadening. J. Appl. Phys. 17, 687–692 (1946)

    Article  Google Scholar 

  43. Cucarella, V.; Renman, G.: Phosphorus sorption capacity of filter materials used for on-site wastewater treatment determined in batch experiments-a comparative study. J. Environ. Qual. 38, 381–392 (2009)

    Article  Google Scholar 

  44. Violante, A.; Pigna, M.: Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 66, 1788–1796 (2002)

    Article  Google Scholar 

  45. Dang, Y.P.; Dalal, R.C.; Edwards, D.G.; Tiller, K.G.: Kinetics of zinc desorption from Vertisols. Soil Sci. Soc. Am. J 58, 1392–1399 (1994)

    Article  Google Scholar 

  46. Kassaee, M.Z.; Motamedi, E.; Mikhak, A.; Rahnemaie, R.: Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chem. Eng. J. 166, 490–495 (2011)

    Article  Google Scholar 

  47. Huang, Y.H.; Zhang, T.C.: Effects of low pH on nitrate reductionby Fe powder. Water Res. 38, 2631–2642 (2004)

    Article  Google Scholar 

  48. Zhang, T.C.; Huang, Y.H.: Effects of selected good’s pH buffers on nitrate reduction by Fe powder. J. Environ. Eng. 131, 461–470 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Zaman Kassaee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhak, A., Sohrabi, A., Kassaee, M.Z. et al. Removal of Nitrate and Phosphate from Water by Clinoptilolite-Supported Iron Hydroxide Nanoparticle. Arab J Sci Eng 42, 2433–2439 (2017). https://doi.org/10.1007/s13369-017-2432-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2432-3

Keywords

Navigation