Skip to main content
Log in

Antioxidant Activity of Hibiscus sabdariffa Extracts Incorporated in an Emulsion System Containing Whey Proteins: Oxidative Stability and Polyphenol–Whey Proteins Interactions

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study was designed within the scope of industrial exploitation of antioxidant extracts from Hibiscus sabdariffa. Efficiency in the extraction of antioxidants (total phenolics, flavonoids and anthocyanins) from calyces was assessed through different processes involving solvents (water, 80% acetone and 80% methanol), microwaves and ultrasounds. Results indicated that microwave extraction with 80% acetone gave the highest yield for total phenolics, expressed as gallic acid equivalents (GAE) per g dry weight (DW) (3.73 GAE/100 g DW), while the highest results for total flavonoids and anthocyanins were found in the microwaved aqueous extracts. Antioxidant activity of the extracts reported the highest reducing power for aqueous extracts with microwave extraction, while 80% acetone and methanol samples exhibited the highest antioxidant activity by high-performance thin-layer chromatography (HPTLC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) reagent. HPTLC performed for screening of phenolic compounds revealed the occurrence of anthocyanins in dimer-like bands. Laboratory tests showed high protection against lipid oxidation of the whey spread emulsion (22.32 h) incorporated with the sonicated aqueous extract. Results of peptide sequencing data by liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), after sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis, revealed protein–polyphenols interactions by the formation of dimers between polyphenols and protein/peptides. These interactions were found without effect on the oxidative stability of the emulsions. These study suggest that H. sabdariffa’s calyces have the potential to be used like food antioxidants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Paul, H.: “Hibiscus sabdariffa” L. Paris 5 (1995)

  2. McClintock, N.; El Tahir, I.: Hibiscus sabdariffa L. PROTA 2 (2004)

  3. Hassan, B.H.; Hobani, A.I.: Flow properties of Roselle (Hibiscus sabdariffa L.) extract. J. Food Eng. 35(4), 459–470 (1998). doi:10.1016/S0260-8774(98)00044-2

    Article  Google Scholar 

  4. Endrias, A.: Bio-raffinage de plantes aromatiques et médicinales appliqué à l’Hibiscus sabdariffa L. et à l’Artemisia annua (2006)

  5. Cisse, M.; Dornier, M.; Sakho, M.; Ndiaye, A.; Reynes, M.; Sock, O.: Le bissap (Hibiscus sabdariffa L.): composition et principales utilisations. Fruits 64(03), 179–193 (2009)

    Article  Google Scholar 

  6. Tsai, P.J.; Huang, H.P.; Huang, T.C.: Relationship between anthocyanin patterns and antioxidant capacity in mulberry wine during storage. J. Food Qual. 27(6), 497–505 (2004)

    Article  Google Scholar 

  7. Mendoza-Díaz, S.; Mendoza-Díaz, S.; del Carmen Ortiz-Valerio, M.; Castaño-Tostado, E.; de Dios Figueroa-Cárdenas, J.; Reynoso-Camacho, R.; Ramos-Gómez, M.; Campos-Vega, R.; Loarca-Piña, G.: Antioxidant capacity and antimutagenic activity of anthocyanin and carotenoid extracts from nixtamalized pigmented creole maize races (Zea mays L.). Plant Foods Hum. Nutr. 67(4), 442–449 (2012)

    Article  Google Scholar 

  8. Calligaris, S.; Manzocco, L.; Nicoli, M.C.: Modelling the temperature dependence of oxidation rate in water-in-oil emulsions stored at sub-zero temperatures. Food Chem. 101(3), 1019–1024 (2007). doi:10.1016/j.foodchem.2006.02.056

    Article  Google Scholar 

  9. St Angelo, A.J.: Lipid oxidation in food. In: ACS Symposium Series (USA). American Chemical Society (1992)

  10. Sáyago-Ayerdi, S.G.; Arranz, S.; Serrano, J.; Goñi, I.: Dietary fiber content and associated antioxidant compounds in roselle flower (Hibiscus sabdariffa L.) beverage. J. Agric. Food Chem. 55(19), 7886–7890 (2007)

    Article  Google Scholar 

  11. Bidie, A.; N’guessan, B.; Yapo, A.; N’guessan, J.; Djaman, A.: Activités antioxydantes de dix plantes medicinales de la pharmacopée ivoirienne. Sci. Nat. 8(1–2), 1–12 (2013)

    Google Scholar 

  12. Gu, L.; Zheng, S.; Wu, T.; Chou, G.; Wang, Z.: High-performance thin-layer chromatographic–bioautographic method for the simultaneous determination of Magnolol and Honokiol in Magnoliae officinalis Cortex. JPC-J. Plan. Chromatogr.-Mod. TLC 27(1), 5–10 (2014)

    Article  Google Scholar 

  13. Wang, J.; Cao, X.; Qi, Y.; Ferchaud, V.; Chin, K.L.; Tang, F.: High-performance thin-layer chromatographic method for screening antioxidant compounds and discrimination of Hibiscus sabdariffa L. by principal component analysis. J. Plan. Chromatogr. 28(4), 274–279 (2015)

    Article  Google Scholar 

  14. Cieśla, Ł.; Kryszeń, J.; Stochmal, A.; Oleszek, W.; Waksmundzka-Hajnos, M.: Approach to develop a standardized TLC-DPPH test for assessing free radical scavenging properties of selected phenolic compounds. J. Pharm. Biomed. Anal. 70, 126–135 (2012)

    Article  Google Scholar 

  15. Yrjönen, T.; Peiwu, L.; Summanen, J.; Hopia, A.; Vuorela, H.: Free radical-scavening activity of phenolics by reversed-phase TLC. J. Am. Oil Chem. Soc. 80(1), 9–14 (2003). doi:10.1007/s11746-003-0642-z

    Article  Google Scholar 

  16. Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M.: Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng. 117(4), 426–436 (2013). doi:10.1016/j.jfoodeng.2013.01.014

    Article  Google Scholar 

  17. Li, Y.; Fabiano-Tixier, A.S.; Vian, M.A.; Chemat, F.: Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trends Anal. Chem. 47, 1–11 (2013). doi:10.1016/j.trac.2013.02.007

    Article  Google Scholar 

  18. Vinatoru, M.: An overview of the ultrasonically assisted extraction of bioactive principles from herbs. Ultrason. Sonochem. 8(3), 303–313 (2001). doi:10.1016/S1350-4177(01)00071-2

    Article  Google Scholar 

  19. Liu, Q.; Cai, W.; Shao, X.: Determination of seven polyphenols in water by high performance liquid chromatography combined with preconcentration. Talanta 77(2), 679–683 (2008). doi:10.1016/j.talanta.2008.07.011

    Article  Google Scholar 

  20. Ignat, I.; Volf, I.; Popa, V.I.: A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 126(4), 1821–1835 (2011). doi:10.1016/j.foodchem.2010.12.026

    Article  Google Scholar 

  21. Smithers, G.W.: Whey and whey proteins-from ‘gutter-to-gold’. Int. Dairy J. 18(7), 695–704 (2008)

    Article  Google Scholar 

  22. Zall, R.R.: Sources and composition of whey and permeate. In: Zadow, J.G. (ed.) Whey Lactose Process., pp. 1–72. Springer, Netherlands (1992)

    Chapter  Google Scholar 

  23. Schanbacher, F.L.; Talhouk, R.S.; Murray, F.A.: Biology and origin of bioactive peptides in milk. Livest. Prod. Sci. 50(1–2), 105–123 (1997). doi:10.1016/S0301-6226(97)00082-1

    Article  Google Scholar 

  24. Korhonen, H.; Pihlanto, A.: Bioactive peptides: production and functionality. Int. Dairy J. 16(9), 945–960 (2006). doi:10.1016/j.idairyj.2005.10.012

    Article  Google Scholar 

  25. Onwulata, C.; Huth, P.: Whey Processing, Functionality and Health Benefits, vol. 82. Wiley, New Jersey (2009)

    Google Scholar 

  26. N, Keri Marshall: Therapeutic applications of whey protein. Altern. Med. Rev. 9(2), 136–156 (2004)

    Google Scholar 

  27. Madureira, A.R.; Pereira, C.I.; Gomes, A.M.; Pintado, M.E.; Malcata, F.X.: Bovine whey proteins-overview on their main biological properties. Food Res. Int. 40(10), 1197–1211 (2007)

    Article  Google Scholar 

  28. Bryant, C.M.; McClements, D.J.: Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci. Technol. 9(4), 143–151 (1998). doi:10.1016/S0924-2244(98)00031-4

    Article  Google Scholar 

  29. Farrag, A.: Emulsifying and foaming properties of whey protein concentrates in the presence of some carbohydrates. Int. J. Dairy Sci. 3(1), 20–28 (2008)

    Article  Google Scholar 

  30. Herceg, Z.; Režek, A.; Lelas, V.; Krešić, G.; Franetović, M.: Effect of carbohydrates on the emulsifying, foaming and freezing properties of whey protein suspensions. J. Food Eng. 79(1), 279–286 (2007)

    Article  Google Scholar 

  31. Dahmoune, F.; Boulekbache, L.; Moussi, K.; Aoun, O.; Spigno, G.; Madani, K.: Valorization of Citrus limon residues for the recovery of antioxidants: evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod. 50, 77–87 (2013). doi:10.1016/j.indcrop.2013.07.013

    Article  Google Scholar 

  32. Dahmoune, F.; Spigno, G.; Moussi, K.; Remini, H.; Cherbal, A.; Madani, K.: Pistacia lentiscus leaves as a source of phenolic compounds: microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 61, 31–40 (2014). doi:10.1016/j.indcrop.2014.06.035

    Article  Google Scholar 

  33. Gülçın, İ.; Oktay, M.; Kıreçcı, E.; Küfrevıoglu, Öİ.: Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem. 83(3), 371–382 (2003). doi:10.1016/S0308-8146(03)00098-0

    Article  Google Scholar 

  34. Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N.: Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97(4), 654–660 (2006)

    Article  Google Scholar 

  35. Lee, J.; Durst, R.W.; Wrolstad, R.E.: Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88(5), 1269–1278 (2005)

    Google Scholar 

  36. Simonovska, B.; Vovk, I.; Andrenšek, S.; Valentová, K.; Ulrichová, J.: Investigation of phenolic acids in yacon (Smallanthus sonchifolius) leaves and tubers. J. Chromatogr. A 1016(1), 89–98 (2003). doi:10.1016/S0021-9673(03)01183-X

    Article  Google Scholar 

  37. Gagaoua, M.; Boucherba, N.; Bouanane-Darenfed, A.; Ziane, F.; Nait-Rabah, S.; Hafid, K.; Boudechicha, H.-R.: Three-phase partitioning as an efficient method for the purification and recovery of ficin from Mediterranean fig (Ficus carica L.) latex. Sep. Purif. Technol. 132, 461–467 (2014). doi:10.1016/j.seppur.2014.05.050

    Article  Google Scholar 

  38. Mohd-Esa, N.; Hern, F.S.; Ismail, A.; Yee, C.L.: Antioxidant activity in different parts of roselle (Hibiscus sabdariffa L.) extracts and potential exploitation of the seeds. Food Chem. 122(4), 1055–1060 (2010). doi:10.1016/j.foodchem.2010.03.074

  39. Fernández-Arroyo, S.; Rodríguez-Medina, I.C.; Beltrán-Debón, R.; Pasini, F.; Joven, J.; Micol, V.; Segura-Carretero, A.; Fernández-Gutiérrez, A.: Quantification of the polyphenolic fraction and in vitro antioxidant and in vivo anti-hyperlipemic activities of Hibiscus sabdariffa aqueous extract. Food Res. Int. 44(5), 1490–1495 (2011). doi:10.1016/j.foodres.2011.03.040

    Article  Google Scholar 

  40. Monserrat, J.-P.: Synthèse, caractérisation et criblage biologique de nouveaux dérivés ferrocéniques des flavonoïdes : chalcones, aurones, flavones et flavonols. Université Pierre et Marie Curie - Paris VI (2011)

  41. Sindi, H.A.; Marshall, L.J.; Morgan, M.R.A.: Comparative chemical and biochemical analysis of extracts of Hibiscus sabdariffa. Food Chem. 164, 23–29 (2014). doi:10.1016/j.foodchem.2014.04.097

    Article  Google Scholar 

  42. Prenesti, E.; Berto, S.; Daniele, P.G.; Toso, S.: Antioxidant power quantification of decoction and cold infusions of Hibiscus sabdariffa flowers. Food Chem. 100(2), 433–438 (2007)

    Article  Google Scholar 

  43. Acosta-Estrada, B.A.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O.: Bound phenolics in foods, a review. Food Chem. 152, 46–55 (2014)

    Article  Google Scholar 

  44. Meir, S.; Kanner, J.; Akiri, B.; Philosoph-Hadas, S.: Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J. Agric. Food Chem. 43(7), 1813–1819 (1995). doi:10.1021/jf00055a012

    Article  Google Scholar 

  45. Albreht, A.; Vovk, I.: Applicability of analytical and preparative monolithic columns to the separation and isolation of major whey proteins. J. Chromatogr. A 1227, 210–218 (2012). doi:10.1016/j.chroma.2012.01.011

  46. Rawel, H.; Kroll, J.; Hohl, U.: Model studies on reactions of plant phenols with whey proteins. Food/Nahrung 45(2), 72–81 (2001)

    Article  Google Scholar 

  47. Yuksel, Z.; Avci, E.; Erdem, Y.K.: Characterization of binding interactions between green tea flavanoids and milk proteins. Food Chem. 121(2), 450–456 (2010). doi:10.1016/j.foodchem.2009.12.064

  48. Hasni, I.; Bourassa, P.; Hamdani, S.; Samson, G.; Carpentier, R.; Tajmir-Riahi, H.-A.: Interaction of milk \(\upalpha \)- and \(\upbeta \)-caseins with tea polyphenols. Food Chem. 126(2), 630–639 (2011). doi:10.1016/j.foodchem.2010.11.087

    Article  Google Scholar 

  49. Kanakis, C.D.; Hasni, I.; Bourassa, P.; Tarantilis, P.A.; Polissiou, M.G.; Tajmir-Riahi, H.-A.: Milk \(\upbeta \)-lactoglobulin complexes with tea polyphenols. Food Chem. 127(3), 1046–1055 (2011). doi:10.1016/j.foodchem.2011.01.079

    Article  Google Scholar 

  50. Rios, M.S.; Santos, F.P.; Maia, F.N.; Mazzetto, S.: Evaluation of antioxidants on the thermo-oxidative stability of soybean biodiesel. J. Therm. Anal. Calorim. 112(2), 921–927 (2013). doi:10.1007/s10973-012-2650-6

    Article  Google Scholar 

  51. Naima, R.; Oumam, M.; Hannache, H.; Sesbou, A.; Charrier, B.; Pizzi, A.; Charrier-El Bouhtoury, F.: Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Ind. Crops Prod. 70, 245–252 (2015). doi:10.1016/j.indcrop.2015.03.016

    Article  Google Scholar 

  52. Pawar, N.; Gandhi, K.; Purohit, A.; Arora, S.; Singh, R.R.B.: Effect of added herb extracts on oxidative stability of ghee (butter oil) during accelerated oxidation condition. J. Food Sci. Technol. 51(10), 2727–2733 (2014). doi:10.1007/s13197-012-0781-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anis Chikhoune.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhoune, A., Gagaoua, M., Nanema, K.D. et al. Antioxidant Activity of Hibiscus sabdariffa Extracts Incorporated in an Emulsion System Containing Whey Proteins: Oxidative Stability and Polyphenol–Whey Proteins Interactions. Arab J Sci Eng 42, 2247–2260 (2017). https://doi.org/10.1007/s13369-017-2428-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2428-z

Keywords

Navigation