Skip to main content

Advertisement

Log in

Catalytic Profile and Amylolytic Studies of Toluene-Tolerant Enterococcus faecalis str. nov. mercadA7

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This work pivots around screening a toluene-tolerant bacterium with concomitant \(\upalpha \)-amylase production ability. Eighteen \(\upalpha \)-amylase-producing bacterial strains were isolated from samples collected from Tokat province of Turkey among which strain A7 showed maximum \(\upalpha \)-amylase production titers (968 U/ml). The strain A7 was identified as Enterococcus faecalis mercadA7 (KX298857) with 54% GC content and 98% similarity to the closest strain, Enterococcus faecalis NBRC100480 through 16srRNA typing studies. The amylase production was improved 2.6-folds compared to the basal medium at optimal conditions recorded: \(37\,{^{\circ }}\)C, pH 7.0, 18 h incubation, 1%v/v inoculum content and 20% toluene (carbon) supplementation. The amylase activity was demonstrated to increase upon exposure to toluene by a yet to be determined mechanism. The various growth kinetic parameters recorded are specific growth rate, \(\mu _{\mathrm{max}}\) of 0.318 \(\hbox {h}^{-1}\); constant, \(K_{{s}}\) 10.48 mg/ml; yield coefficient, \(Y_{{x}/{s}}\) of 0.1157 mg/g; and cell doubling time, \(t_{\mathrm{d}}\) of 51 min. The enzyme was partially purified with a threefold increase in specific activity; it was found to be active at pH 8 and \(40\,{^{\circ }}\)C; stable from 30 to \(50\,{^{\circ }}\)C and 7–10 pH range; maintaining stability up to 40% of toluene. The purified enzyme’s maximum velocity, \(V_{\mathrm{max}}\) of 3.33 \(\hbox {mmol}/\hbox {h}\,\hbox {ml}\) with constant, Km of 5 mg/ml were determined by Line Weaver Burke plot. Both Enterococcus faecalis mercadA7 and the purified \(\upalpha \)-amylase might find applications in several industrial processes due to the catalytic promiscuity triggered by the presence of toluene, and augmented stability of the cell-free purified enzyme as well as the organism to high alkaline/toluene levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kathiresan, K.; Manivannan, S.: \(\upalpha \)-Amylase production by Penicillium fellutanum isolated from mangrove rhizosphere soil. Afr. J. Biotech. 5(10), 829–832 (2006)

    Google Scholar 

  2. Rajagopalan, G.; Krishnan, C.: \(\upalpha \)-Amylase production from catabolite derepressed Bacillus subtilis KCC103 utilizing sugarcane bagasse hydrolysate. Biores. Technol. 99(8), 3044–3050 (2008)

    Article  Google Scholar 

  3. Reddy, N.S.; Nimmagadda, A.; Rao, K.R.S.S.: An overview of the microbial \(\upalpha \)-amylase family. Afr. J. Biotech. 2(12), 645–648 (2003)

    Article  Google Scholar 

  4. Pandey, A.; Nigam, P.; Soccol, C.R.; Soccol, V.T.; Singh, D.; Mohan, R.: Advances in microbial amylases. Biotechnol. Appl. Biochem. 31, 135–152 (2000)

    Article  Google Scholar 

  5. Adebiyi, A.O.; Adebiyi, A.P.; Olaniyi, E.O.: Biological studies on albino rats fed with Sorghum bicolor starch hydrolyzed with \(\upalpha \)-amylase from Rhizopus sp. Afr. J. Biotechnol. 4, 1089–1094 (2005)

    Google Scholar 

  6. Omemu, A.M.; Akpan, I.; Bankole, M.O.; Teniola, O.D.: Hydrolysis of raw tuber starches by amylase of Aspergillus niger AM07 isolated from the soil. Afr. J. Biotechnol. 4, 19–25 (2005)

    Google Scholar 

  7. Aiyer, P.V.: Amylases and their applications. Afr. J. Biotechnol. 4(13), 1525–1529 (2005)

    Google Scholar 

  8. Thumar, J.T.; Singh, S.P.: Organic solvent tolerance of an alkaline protease from salt-tolerant alkaliphilic Streptomyces clavuligerus strain Mit-1. J. Ind. Microbiol. Biotechnol. 36, 211–218 (2009)

    Article  Google Scholar 

  9. Shafiei, M.; Ziaee, A.A.; Amoozegar, M.A.: Purification and characterization of an organic-solvent-tolerant halophilic \(\upalpha \)-amylase from the moderately halophilic Nesterenkonia sp. strain F. J. Ind. Microbiol. Biotechnol. 38, 275–281 (2011)

    Article  Google Scholar 

  10. Mrowiec, B.: Toluene in sewage and sludge in wastewater treatment plants. Water Sci. Technol. 69(1), 128–134 (2014)

    Article  Google Scholar 

  11. Sikkema, J.; De Bont, J.A.M.; Poolman, B.: Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269, 8022–8028 (1994)

    Google Scholar 

  12. Ogino, H.; Ishikawa, H.: Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91, 109–116 (2001)

    Article  Google Scholar 

  13. Madigan, M.T.; Martinko, J.M.; Stahl, D.A.; Clarck, D.P.: Brock Biology of Microorganisms, 13th edn, pp. 642–656. Prentice Hall, Englewood Cliffs (2011)

    Google Scholar 

  14. Yoo, Y.J.; Hong, J.; Hatch, R.T.: Comparison of \(\upalpha \)-amylase activities from different assay methods. Biotechnol. Bioeng. 30, 147–151 (1987)

    Article  Google Scholar 

  15. Creig, R.N.; Holt, G.J.: Bergey’s Manual of Systematic Bacteriology. Williams & Wilkins, London (1984)

    Google Scholar 

  16. Yadav, V.; Prakash, S.; Srivastava, S.; Verma, P.C.; Gupta, V.; Basu, V.; Rawat, A.K.: Identification of Comamonas species using 16S rRNA gene sequence. J. Bioinform. 3, 381–383 (2009)

    Article  Google Scholar 

  17. Abd-Elhalem, B.T.; El-Sawy, M.; Gamal, R.F.; Abou-Taleb, K.A.: Production of amylases from Bacillus amyloliquefaciens under submerged fermentation using some agro-industrial by-products. Ann. Agric. Sci. 60(2), 193–202 (2015)

    Google Scholar 

  18. Thompson, J.D.; Higgins, D.G.; Gibson, T.J.; Clustal, W.: Improving the sensitivity of progressive multiple sequence alignment though sequence weighting, position-specific gap penalties and weight matrix choice. Nucl. Acids Res. 22, 4673–4680 (1994)

    Article  Google Scholar 

  19. Altschuf, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J.: Grapped BLAST and PSI BLAST: a new generation of protein database search programs. Nucl. Acid 25, 3389–3402 (1997)

    Article  Google Scholar 

  20. Saitou, N.; Nei, M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(4), 406–425 (1987)

    Google Scholar 

  21. Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3, 371–394 (1949)

    Article  Google Scholar 

  22. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970)

    Article  Google Scholar 

  23. Bernfeld, P.: Amylases \(\upalpha \) and beta. In: Colowick, S.P., Kaplan, N.O. (eds.) Methods in Enzymology, vol. 1, pp. 149–158. Academic Press, New York (1995)

    Google Scholar 

  24. Ibrahim, A.N.; Ahmed, F.H.; Ibrahim, M.M.K.; Arafa, M.A.I.: Precipitation and purification of amylase enzyme produced by Streptomyces aureofaciens 77. Arch. Pharm. Res. 13(1), 28–32 (1990)

    Article  Google Scholar 

  25. Demirkan, E.: Production, purification, and characterization of \(\upalpha \)-amylase by Bacillus subtilis and its mutant derivates. Turk. J. Biol. 35, 705–712 (2011)

    Google Scholar 

  26. Solheim, M.; Aakra, Å.; Snipen, L.G.; Brede, D.A.; Nes, I.F.: Comparative genomics of Enterococcus faecalis from healthy Norwegian infants. BMC Genomics 10, 194 (2009)

    Article  Google Scholar 

  27. Deb, P.; Talukdar, S.A.; Mohsina, K.; Sarker, P.K.; Abu Sayem, S.M.: Production and partial characterization of extracellular amylase enzyme from Bacillus amyloliquefaciens P-001. SpringerPlus 2, 154 (2013)

  28. Raplong, H.H.; Odeleye, P.O.; Idoko, M.O.; Asanato, J.I.; Odeke, E.H.: Production of \(\upalpha \) amylase by Bacillus cereus in submerged fermentation. Aceh Int. J. Sci. Technol. 3, 124–130 (2014)

    Article  Google Scholar 

  29. Ahmed, K.; Valeem, E.E.; Khan, M.A.; Qamar-ul-Haq, : Biosynthesis of \(\upalpha \) amylase from Aspergillus fumigatus (fresenius 1863) in submerged fermentation. Pak. J. Biotechnol. 12(2), 87–92 (2015)

    Google Scholar 

  30. Yoon, M.Y.; Yoo, Y.J.; Cadman, T.W.: Phosphate effects in the fermentation of \(\upalpha \)-amylase by Bacillus amyloliquefaciens. Biotechnol. Lett. 11(1), 57–60 (1989)

    Article  Google Scholar 

  31. Rukhaiyar, R.; Srivastav, S.K.: Effect of various carbon substrates on \(\upalpha \)-amylase production from Bacillus species. J. Microbiol. Biotechnol. 10, 76–82 (1995)

    Google Scholar 

  32. Alghabpoor, S.S.; Panosyan, H.; Popov, Y.: Production of thermostable \(\upalpha \)-amylase by Bacillus sp. Iranian s2 using solid state fermentation. Electron. J Nat. Sci. 2(21), 47–50 (2013)

    Google Scholar 

  33. Mukhtar, H.; Ikram-Ul-Haq, : Concomitant production of two proteases and \(\upalpha \)-amylase by a novel strain of Bacillus subtilis in a microprocessor controlled bioreactor. Braz. J. Microbiol. 43, 1072–1079 (2012)

    Article  Google Scholar 

  34. Hillier, P.; Wase, D.A.J.; Emery, A.N.; Solomons, G.L.: Instability of amylase production and morphological variation in continuous culture of Bacillus amyloliquefaciens is associated with plasmid loss. Process Biochem. 32, 51–59 (1997)

    Article  Google Scholar 

  35. Lonsane, B.K.; Ghildyal, N.P.; Budiatman, S.; Ramakrishna, S.V.: Engineering aspects of solid state fermentation. Enzyme Microb. Technol. 7, 258–265 (1985)

    Article  Google Scholar 

  36. Emenike, O.B.; Chibuzo, C.F.; Sabinus, O.O.E.: Characterization of partially purified-amylase from germinating African breadfruit (Treculia africana) seeds. Int. J. Pharm. Med. Sci. 5(1), 15–21 (2015)

    Google Scholar 

  37. Behal, A.; Singh, J.; Sharma, M.K.; Puri, P.; Batra, N.: Characterization of alkaline \(\upalpha \)-amylase from Bacillus sp. AB 04. Braz. J. Microbiol. 41(4), 850–861 (2010)

    Google Scholar 

  38. Syed, D.G.; Agasar, D.; Pandey, A.: Production and partial purification of \(\upalpha \)-amylase from a novel isolate Streptomyces gulbargensis. J. Indus. Microbiol. Biotechnol. 36(2), 189–194 (2009)

    Article  Google Scholar 

  39. Chakraborty, S.; Khopade, A.; Kokare, C.; Mahadik, K.; Chopade, B.: Isolation and characterization of novel \(\upalpha \)-amylase from marine Streptomyces sp. D1. J. Mol. Catal. B Enzym. 58, 17–23 (2009)

    Article  Google Scholar 

  40. Sani, I.; Abdulhamid, A.; Bello, F.; Yahaya, M.; Bagudo, A.I.: Isolation, partial purification and characterization of \(\upalpha \)-amylase from Bacillus subtilis. J. Microbiol. Biotechnol. Res. 4, 49–54 (2014)

    Google Scholar 

  41. Englard, S.; Seifter, S.: Precipitation techniques. In: Murray, E.D.; Dentscher, P. (eds.) Methods in Enzymology, vol. 182, pp. 425–441. Elsevier, USA (1990)

  42. Spencer-Martin, I.: Extracellular isoamylase produced by the yeast Lipomyces kononenkae. Eur. J. Appl. Microbiol. 44(60), 1253–1257 (1982)

    Google Scholar 

  43. de Souza, P.M.; de Oliveira, M.P.: Application of microbial \(\upalpha \)-amylase in industry: a review. Braz. J. Microbiol. 41(4), 850–61 (2010)

    Google Scholar 

  44. Kumar, S.; Khare, S.K.: Purification and characterization of maltooligosaccharide-forming \(\upalpha \)-amylase from moderately halophilic Marinobacter sp. EMB8. Bioresour. Technol. 116, 247–251 (2012)

    Article  Google Scholar 

  45. Tiwari, S.; Shukla, N.; Mishra, P.; Gaur, R.: Enhanced production and characterization of a solvent stable amylase from solvent tolerant Bacillus tequilensis RG-01: thermostable and surfactant resistant. Sci. World J. Article ID 972763, 1–11 (2014)

  46. Segura, A.; Hurtado, A.; Rivera, B.; Lazaroaie, M.M.: Isolation of new toluene-tolerant marine strains of bacteria and characterization of their solvent-tolerance properties. J. Appl. Microbiol. 104(5), 1408–1416 (2008)

    Article  Google Scholar 

  47. Li, X.; Yu, H.Y.: Characterization of an organic solvent-tolerant \(\upalpha \)-amylase from a halophilic isolate Thalassobacillus sp. LY18. Folia Microbiol. 57(5), 447–453 (2012)

    Article  MathSciNet  Google Scholar 

  48. Chang, J.; Lee, Y.S.; Fang, S.J.: Recombinant expression and characterization of an organic-solvent-tolerant \(\upalpha \)-amylase from Exiguobacterium sp. DAU5. Appl. Biochem. Biotechnol. 169, 1870–1883 (2013)

    Article  Google Scholar 

  49. Moshfegh, M.; Shahverdi, A.R.; Zarrini, G.: Biochemical characterization of an extracellular polyextremophilic \(\upalpha \)-amylase from the halophilic archaeon Halorubrum xinjiangense. Extremophiles 17, 677–687 (2013)

  50. Fukushima, T.; Mizuki, T.; Echigo, A.; Inoue, A.; Usami, R.: Organic solvent tolerance of halophilic \(\upalpha \)-amylase from a Haloarchaeon, Haloarcula sp. strain S-1. Extremophiles 9(1), 85–89 (2005)

    Article  Google Scholar 

  51. Pandey, S.; Singh, S.P.: Organic solvent tolerance of an [\(\upalpha \)]-amylase from haloalkaliphilic bacteria as a function of pH, temperature, and salt concentrations. Appl. Biochem. Biotechnol. 166(7), 1747–1757 (2012)

    Article  Google Scholar 

  52. Hossain, S.M.Z.; Haki, G.D.; Rakshit, S.K.: Optimum production and characterization of thermostable amylolytic enzymes from B. stearothermophilus GRE1. Can. J. Chem. Eng. 84, 368–374 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haritha Meruvu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meruvu, H. Catalytic Profile and Amylolytic Studies of Toluene-Tolerant Enterococcus faecalis str. nov. mercadA7. Arab J Sci Eng 42, 1517–1527 (2017). https://doi.org/10.1007/s13369-016-2386-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2386-x

Keywords

Navigation