Skip to main content

Advertisement

Log in

Energetic Performance Optimization of a SOFC–GT Hybrid Power Plant

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Analytic study based on energy analysis is conducted on a solid oxide fuel cell (SOFC) integrated in a gas turbine power plant GT. The Tunisian natural gas is used as fuel for the SOFC and the GT cycle. An external pre-reforming system is installed before the SOFC. Heat recovery systems are adopted to valorize the waste heat at the SOFC and GT exhausts. The gas from the SOFC exhaust is also used as additional supply of the combustion chamber. The equations governing the electrochemical processes and the energy balances of the power plant components are established. Numerical simulations using EES software are performed. The influences of key operating parameters, such as ambient temperature, air flow, pre-reforming fraction and fuel utilization on the performance of the SOFC–GT hybrid system, are analyzed. The integration of the SOFC enhances the hybrid cycle efficiency of about 50%. The increase of the ambient temperature reduces the system efficiencies. The utilization factor has a negative effect on the SOFC temperature and voltage which leads to a decrease in the system performances, while the pre-reforming fraction has a positive effect on the indicated parameters. The SOFC voltage increases with the air molar flow rate. However, required air compressor power becomes important. That reduces significantly the SOFC efficiency. A small improvement of about 2% is obtained for the hybrid cycle efficiency SOFC–GT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SOFC:

Solid oxide fuel cell

GT:

Gas turbine

HE:

Heat exchanger

\(V_{\mathrm{ohm}}\) :

Ohmic polarization (V)

\(V_{\mathrm{act}}\) :

Activation polarization (V)

\(V_{\mathrm{conc}}\) :

Concentration polarization (V)

I :

Current density (A/m\(^{2}\))

\(R_{\mathrm{e}}\) :

The resistance (\(\Omega \))

\(\delta _j\) :

The thickness (m)

\(\rho _j\) :

The specific electric resistivity of the anode, cathode, electrolyte and interconnect

\(A_j\) :

The area (m\(^{2})\)

\(\varepsilon \) :

The porosity coefficient

\(\tau \) :

The tortuosity coefficient

\(D_{1,K}\) :

The Knudsen diffusion coefficient

\(\sigma _{12} \) :

Collision diameter

\(\varOmega _{12}\) :

Collision integral

PR:

The pressure ratio

k:

The specific heat ratio

\(\dot{m}_\mathrm{a}\) :

The mass of dry air the ratio (kg/s)

\(\dot{m}_\mathrm{v}\) :

The mass of vapor (kg/s)

\(\dot{m}_\mathrm{f}\) :

The mass of fuel (kg/s)

\(T_{\mathrm{am}}\) :

Ambient temperature (\(^\circ \hbox {C}\))

\({\varvec{\upeta }}\) :

Energetic efficiency

\(U_{\mathrm{f}}\) :

Utilization factor

\(V_{\mathrm{SOFC}}\) :

SOFC voltage (V)

\(X_{\mathrm{reform}}\) :

Pre-reforming fraction

\(\dot{\eta }_\mathrm{air}\) :

Air flow (mol/s)

\({\varvec{\upeta }}\hbox {c}\) :

Isentropic efficiency

\(P_{\mathrm{SOFC}}\) :

SOFC power output (MW)

\(W_{\mathrm{GT}}\) :

Gas turbine power output (MW)

\(W_{\mathrm{aux}}\) :

Auxiliary power (MW)

References

  1. Massardo, A.F.; Lubelli, F.: Internal reforming solid oxide fuel cell–gas turbine combined cycles (IRSOFC–GT): part A—cell model and cycle thermodynamic analysis. J. Eng. Gas Turbine Power 122, 27–35 (2000)

    Article  Google Scholar 

  2. Barelli, L.; Bidini, G.; Ottaviano, A.: Part load operation of SOFC/GT hybrid systems: stationary analysis. Int. J. Hydrog. Energy 37, 16140–16150 (2012)

    Article  Google Scholar 

  3. El-Emama, R.S.; Dincera, I.; Naterera, G.F.: Energy and exergy analyses of an integrated SOFC and coal gasification system. Int. J. Hydrog. Energy 37, 1689–1697 (2012)

    Article  Google Scholar 

  4. Horlock, J.H.: Combined power plants: past, present and future. Trans. ASME J. Eng. Gas Turbines Power 117, 608–616 (1995)

    Article  Google Scholar 

  5. Kelhofer, R.: Combined Cycle Gas and Steam Power Plants. Fairmount Press, Inc, Lilburn (1991)

    Google Scholar 

  6. Massardo, A.F.; Lubelli, F.: Internal reforming solid oxide fuel cell-gas turbine: part A: cell model and cyclethermodynamic analysis. J. Eng. Gas Turbine Power 122, 27–35 (2000)

    Article  Google Scholar 

  7. Dincer, I.; Rosen, M.; Zamfirescu, C.: Exergetic performance analysis of a gas turbine cycle integrated with a solid oxidefuel cells. J. Energy Resour. Technol. 131, 1–11 (2009)

    Article  Google Scholar 

  8. Saisirirat, P.: The solid oxide fuel cell (SOFC) and gas turbine (GT). Hybrid Syst. Numer. Model Energy Procedia 79, 845–850 (2015)

  9. Yi, Y.; Rao, A.D.; Brouwer, J.; Samuelsen, G.S.: Analysis and optimization of a solid oxide fuel cell and intercooled gas turbine (SOFC–ICGT) hybrid cycle. J. Power Sources 132, 77–85 (2004)

    Article  Google Scholar 

  10. Inui, Y.; Yanagisawa, S.; Ishida, T.: Proposal of high performance SOFC combined power generation system with carbon dioxide recovery. Energy Convers. Manage. 44(4), 597–609 (2003)

    Article  Google Scholar 

  11. Chan, S.H.; Ho, H.K.; Tian, Y.: Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant. J. Power Sources 109(1), 111–120 (2002)

    Article  Google Scholar 

  12. Massardo, A.F.; Lubelli, F.: Internal reforming solid oxide fuel cell-gas turbine combined cycles (IRSOFC-GT): part A-cell model and cycle thermodynamic analysis. J. Eng. Gas Turbine Power 122, 27–35 (2000)

    Article  Google Scholar 

  13. Arsalis, A.: Thermodynamic modeling and parametric study or hybrid SOFC-gas turbine-steam turbine power plants ranging from 1.5 to 10 MWe. J. Power Sources 181, 313–326 (2008)

    Article  Google Scholar 

  14. Ishak, F.; Dincer, I.; Zamfirescu, C.: Energy and exergy analyses of direct ammonia solid oxide fuel cell integrated with gas turbine power cycle. J. Power Sources 212, 73–85 (2012)

    Article  Google Scholar 

  15. Penyarat, C.; Pascal, B.: The hybrid solid oxide fuel cell (SOFC) and gas turbine (GT) systems steady state modeling. Int. J. Hydrog. Energy 37, 9237–9248 (2012)

    Article  Google Scholar 

  16. Zhang, X.; Li, J.; Li, G.; Feng, Z.: Cycle analysis of an integrated solid oxide fuel cell and recuperative gas turbine with an air reheating system. J. Power Sources 164, 752–760 (2007)

    Article  Google Scholar 

  17. Zamfirescu, C.; Dincer, I.: Thermodynamic performance analysis and optimization of a SOFC-\({\rm H}^+\) system. Thermochim. Acta 486, 32–40 (2009)

    Article  Google Scholar 

  18. Saebea, D.; Authayanun, S.; Patcharavorachot, Y.; Arpornwichanop, A.: Effect of anode–cathode exhaust gas recirculation on energy recuperation in a solid oxide fuel cell-gas turbine hybrid power system. Energy 94, 218–232 (2016)

    Article  Google Scholar 

  19. Zhang, X.; Li, G.; Li, J.; Feng, Z.: Numerical study on electric characteristics of solid oxide fuel cells. Energy Convers. Manag. 48, 977–989 (2007)

    Article  Google Scholar 

  20. Singhal, S.C.; Kendall, K.: High Temperature Solid Oxide Fuel Cells: Fundamentals Design and Applications. Elsevier, Oxford (2003)

    Google Scholar 

  21. Berger, C.: Handbook of Fuel Cell Technology. Prentice-Hall, Englewood Cliffs (1968)

    Google Scholar 

  22. Cocco, D.; Tola, V.: Externally reformed solid oxide fuell cell–micro-gas turbine (SOFC–MGT) hybrid systems fueled by methanol and di-methyl-ether (DME). Energy 34, 2124–2130 (2009)

    Article  Google Scholar 

  23. Isfahani, S.N.R.; Sedaghat, A.: A hybrid micro gas turbine and solid state fuel cell power plant with hydrogen production and \(\text{ CO }_{2}\) capture. Int. J. Hydrog. Energy 41, 9490–9494 (2016)

    Article  Google Scholar 

  24. Duan, L.; Huang, K.; Zhang, X.; Yang, Y.: Comparison study on different SOFC hybrid systems with zero-\(\text{ CO }_{2}\) emission. In: The 25th International Conference on Efficiency, Cost, Optimization and Simulation of Energy Conversion Systems and Processes. ECOS (2012)

  25. Chan, S.H.; Ho, H.K.; Tian, Y.: Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant. J. Power Sources 109, 111–120 (2002)

    Article  Google Scholar 

  26. Penoncello, S.G.: Thermal energy systems: design and analysis. International standard book number 576. ISBN 9781482245998

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salha Faleh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faleh, S., Khir, T. & Ben Brahim, A. Energetic Performance Optimization of a SOFC–GT Hybrid Power Plant. Arab J Sci Eng 42, 1505–1515 (2017). https://doi.org/10.1007/s13369-016-2363-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2363-4

Keywords

Navigation