Skip to main content
Log in

Recent Developments in Current-Mode Sinusoidal Oscillators: Circuits and Active Elements

  • Review Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper a review of the state-of-the-art analog active elements and their applications in developing current-mode sinusoidal oscillators with explicit output currents is presented. The oscillator circuits are classified according to the active elements used, the number of output currents, the order of the oscillator, the feasibility of independent control of the frequency and the condition of oscillation according to the widely used Barkhausen criterion. The accuracy of the conclusions based on the use of this criterion for controlling the frequency and the condition of oscillation is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toumazou, C.; Lidgey, F.J.; Haigh, D.G.: The Current Mode Approach and Analog IC Design. Peter Pergrinus, London (1990)

    Google Scholar 

  2. Wilson, B.: Recent developments in current mode circuits. IEE Proc. G 137, 63–67 (1990)

    Google Scholar 

  3. Vidal, E.; Alarcon, E.; Gilbert, B.: Up-to-date bibliography of current-mode design. Analog Integr. Circuits Signal Process. 38, 245–262 (2004)

    Article  Google Scholar 

  4. Abdalla, K.K.; Bhaskar, D.R.; Senani, R.: A review of the evolution of current-mode circuits and techniques and various modern analog circuit building blocks. Nat. Sci. 10, 1–13 (2012)

    Google Scholar 

  5. Biolek, D.; Senani, R.; Biolkova, V.; Kolka, Z.: Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17, 15–32 (2008)

    Google Scholar 

  6. Fabre, A. (Guest Editor): Special issue: Current processing and current mode circuits. Analog Integr. Circuits Signal Process. 7(2), 71–73 (1995)

  7. Fabre, A. (Guest Editor): Special issue: Current processing and current mode circuits. Analog Integr. Circuits Signal Process. 7(3), 185–187 (1995)

  8. Wheatley, C.F.; Witt linger, H.A.: OTA obsoletes Op Amp. In: Proceedings of the National Electronics Conference, pp. 152–157 (1969)

  9. Summart, S.; Thongsopa, C.; Jaikla, W.: OTA based current-mode sinusoidal quadrature oscillator with non-interactive control. Prz. Elektrotech. (Electr. Rev.) 88, 14–17 (2012)

    Google Scholar 

  10. Tu, S.-H.; Hwang, Y.-S.; Chen, J.-J.; Soliman, A.M.; Chang, C.-M.: OTA-C arbitrary-phase-shift oscillators. IEEE Trans. Instrum. Meas. 61, 2305–2319 (2012)

    Article  Google Scholar 

  11. Bhaskar, D.R.; Abdalla, K.K.; Senani, R.: Electronically-controlled current-mode second order sinusoidal oscillators using MO-OTAs and grounded capacitors. Circuits Syst. 2, 65–73 (2011)

    Article  Google Scholar 

  12. Minaei, A.; Cicekoglu, O.: New current-mode integrator, all-pass section and quadrature oscillator using only active elements. In: Proceedings of the 1st IEEE International Conference on Circuits and Systems for Communications, pp. 70–73 (2002)

  13. Sotner, R.; Jerabek, J.; Herencsar, N.; Vrba, K.; Dostal, T.: Features of multi-loop structures with OTAs and adjustable current amplifier for second-order multiphase/quadrature oscillators. Int. J. Electron. Commun. 69, 814–822 (2015)

    Article  Google Scholar 

  14. Tsukutani, T.; Sumi, Y.; Fukui, Y.: Electronically controlled current-mode oscillators using MO-OTAs and grounded capacitors. Frequenz 60, 220–223 (2006)

    Google Scholar 

  15. Kuntman, H.; Ozpinar, A.: On the realization of DO-OTA-C oscillators. Microelectron. J. 29, 991–997 (1998)

    Article  Google Scholar 

  16. Senani, R.; Gupta, M.; Bhaskar, D.R.; Singh, A.K.: Generation of equivalent forms of operational trans-conductance amplifier-RC sinusoidal oscillators: the nullor approach. IET J. Eng. (2014). doi:10.1049/joe.2013.0200

    Google Scholar 

  17. Kamath, D.V.: OTA based current-mode sinusoidal quadrature oscillator circuits. Int. J. Syst. Model. Simul. 1, 1–6 (2016)

    MathSciNet  Google Scholar 

  18. Thosdeekoraphat, T.; Thongsopa, C.; Summart, S.; Seatiaw, C.: Second order current-mode quadrature oscillators using OTAs. Prz. Elektrotechn. 92, 156–160 (2016)

  19. Biolek, D.: CDTA-building block for current-mode analog signal processing. Proc. Eur. Conf. Circuit Theory Des. 3, 397–400 (2003)

    Google Scholar 

  20. Summart, S.; Thongsopa, C.; Jaikla, W.: New current-controlled current-mode sinusoidal quadrature oscillator using CDTAs. Int. J. Electron. Commun. (AEU) 69, 62–68 (2015)

    Article  Google Scholar 

  21. Summart, S.; Saetiaw, C.; Thosdeekoraphat, T.; Thongsopa, C.: First order filter based current-mode sinusoidal oscillators using current differencing transconductance amplifiers (DCTAs). Int. J. Electr. Comput. Electron. Commun. Eng. 8, 1037–1041 (2014)

    Google Scholar 

  22. Chen, S.; Wang, J.: Current-mode current-tunable four-phase quadrature oscillator. Optik 125, 6227–6230 (2014)

    Article  Google Scholar 

  23. Jin, J.: Resistorless active SIMO universal filter and four phase quadrature oscillator. Arab. J. Sci. Eng. 39, 3887–3894 (2014)

    Article  Google Scholar 

  24. Jin, J.; Wang, C.H.: Current-mode universal filter and quadrature oscillator using CDTAs. Turk. J. Electr. Eng. Comput. Sci. 22, 276–286 (2014)

    Article  Google Scholar 

  25. Jin, J.; Wang, C.: CDTA-based electronically tunable current-mode quadrature oscillator. Int. J. Electron. 101, 1086–1095 (2014)

    Article  Google Scholar 

  26. Jin, J.: Current-mode resistorless SIMO universal filter and four-phase quadratic oscillator. Int. J. Electr. Comput. Electron. Commun. Eng. 7, 149–154 (2013)

    Google Scholar 

  27. Jin, J.; Liang, P.: Resistorless current-mode quadrature oscillator with grounded capacitors. Rev. Roum. Sci. Tech. 58, 304–313 (2013)

    Google Scholar 

  28. Jin, J.: Current-mode resistorless SIMO universal filter and four-phase quadrature oscillator. Int. J. Electr. Comput. Electron. Commun. Eng. 7, 149–154 (2013)

    Google Scholar 

  29. Jin, J.; Wang, C.: Single CDTA-based current-mode quadrature oscillator. Int. J. Electron. Commun. (AEU) 66, 933–936 (2012)

    Article  Google Scholar 

  30. Li, Y.: A novel current-mode multiphase sinusoidal oscillator using MO-CDTAs. Int. J. Electron. 99, 477–489 (2012)

    Article  Google Scholar 

  31. Jin, J.; Wang, C.: Current-mode four-phase quadrature oscillator using current differencing transconductance amplifier based first-order allpass filter. Rev. Roum. Sci. Tech. 57, 291–300 (2012)

    Google Scholar 

  32. Pandey, N.; Paul, S.K.: Single CDTA-based current mode all-pass filter and its applications. J. Electr. Comput. Eng. Article ID 897631 (2011)

  33. Horng, J.-W.; Lee, H.; Wu, J.-Y.: Electronically tunable third-order quadrature oscillator using CDTAs. Radioengineering 19, 326–330 (2010)

    Google Scholar 

  34. Biolek, D.; Keskin, A.U.; Biolkova, V.: Grounded capacitor current mode single resistance-controlled oscillator using single modified current differencing transconductance amplifier. IET Circuits Devices Syst. 4, 496–502 (2010)

    Article  Google Scholar 

  35. Li, Y.: Electronically tunable current-mode quadrature oscillator using single MCDTA. Radioengineering 19, 667–671 (2010)

    Google Scholar 

  36. Bumrongchoke, T.; Duangmalai, D.; Jaikla, W.: Current differencing transconductance amplifier based current-mode quadrature oscillator using grounded capacitors. In: Proceedings of the 10th International Symposium on Communications and Information Technologies, pp. 192–195 (2010)

  37. Tangsrirat, W.; Tanjaroen, W.: Current-mode sinusoidal quadrature oscillator with independent control of oscillation frequency and condition using CDTAs. Indian J. Pure Appl. Phys. 48, 363–366 (2010)

    Google Scholar 

  38. Jaikla, W.; Siripruchyanun, M.; Biolek, D.; Biolkova, V.: High-output-impedance current-mode multiphase sinusoidal oscillator employing current differencing transconductance amplifier-based allpass filters. Int. J. Electron. 97, 811–826 (2010)

    Article  Google Scholar 

  39. Lawanwisut, S.; Biolek, D.; Siripruchyanun, M.: A simple current-mode quadrature oscillator using only single CDTA. In: Proceedings of the 1st International Conference on Technical Education, pp. 119–122 (2010)

  40. Lahiri, A.: New current-mode quadrature oscillators using CDTA. IEICE Electron. Express 6, 135–140 (2009)

    Article  Google Scholar 

  41. Lahiri, A.: Novel voltage/current-mode quadrature oscillator using current differencing transconductance amplifier. Analog Integr. Circuits Signal Process. 61, 199–203 (2009)

    Article  Google Scholar 

  42. Tangsrirat, W.; Tanjaroen, W.; Pukkalanun, T.: Current-mode multiphase sinusoidal oscillator using CDTA-based allpass sections. Int. J. Electron. Commun. (AEU) 63, 616–622 (2009)

    Article  Google Scholar 

  43. Kumngern, M.; Dejhan, K.: Electronically tunable current-mode quadrature oscillator using current differencing transconductance amplifiers. In: Proceedings of the IEEE Region 10 Conference, pp. 1–4 (2009)

  44. Tanjaroen, W.; Tangsrirat, W.: Resistorless current-mode quadrature sinusoidal oscillator using CDTAs. In: Proceedings of the Asia Pacific Signal and Information Processing, pp. 307–310 (2009)

  45. Jaikla, W.; Siripruchyanun, M.; Bajer, J.; Biolek, D.: A simple current-mode quadrature oscillator using single CDTA. Radioengineering 17, 33–40 (2008)

    Google Scholar 

  46. Tangsrirat, W.: Current differencing transconductance amplifier-based current-mode four-phase quadrature oscillator. Indian J. Eng. Mater. Sci. 14, 289–294 (2007)

    Google Scholar 

  47. Keskin, A.U.; Biolek, D.: Current mode quadrature oscillator using current differencing transconductance amplifiers (CDTA). IEE Proc. Circuits Devices Syst. 153, 214–218 (2006)

    Article  Google Scholar 

  48. Uygur, A.; Kuntman, H.: CDTA-based quadrature oscillator design. In: Proceedings of the 14th European Signal Processing Conference (2006)

  49. Biolek, D.; Biolkova, V.; Keskin, A.U.: Current mode quadrature oscillator using two CDTAs and two grounded capacitors. In: Proceedings of the 5th WSEAS International Conference on System Science and Simulation in Engineering, pp. 368–370 (2006)

  50. Horng, J.-W.: Current-mode third-order quadrature oscillator using CDTAs. Act. Passive Electron. Compon. Article ID 789171 (2009)

  51. Malcher, A.: Modified current differencing transconductance amplifier—new versatile active element. Bull. Pol. Acad. Sci. 60, 739–750 (2012)

    Google Scholar 

  52. Summart, S.; Thongsopa, C.; Jaikla, W.: Dual-output current differencing transconductance amplifiers-based current-mode sinusoidal quadrature oscillators. J. Circuits Syst. Comput. 23. Article Number 1450084 (2014)

  53. Kumngern, M.; Lamun, P.; Dejhan, K.: Current-mode quadrature oscillator using current differencing transconductance amplifiers. Int. J. Electron. 99, 971–986 (2012)

    Article  Google Scholar 

  54. Tangsrirat, W.; Tanjaroen, W.: Current-mode multiphase sinusoidal oscillator using current differencing transconductance amplifiers. J. Circuits Syst. Signal Process. 27, 81–93 (2008)

    Article  Google Scholar 

  55. Prasad, D.; Bhaskar, D.R.: Electronically controllable explicit current output sinusoidal oscillator employing single VDTA. Int. Sch. Res. Netw. (ISRN Electron.). Article ID 382560 (2012)

  56. Prasad, D.; Srivastava, M.; Bhaskar, D.R.: Electronically controllable fully-uncoupled explicit current-mode quadrature oscillator using VDTAs and grounded capacitors. Circuits Syst. 4, 169–172 (2013)

    Article  Google Scholar 

  57. Channumsin, O.; Jantakun, A.: Third-order sinusoidal oscillator using VDTAs and grounded capacitors with amplitude controllability. In: Proceedings of the 4th Joint International Conference on Information and Communication technology, Electronics and Electrical Engineering (2014)

  58. Chandee, S.; Jaikla, W.; Suwanjan, P.: New quadrature sinusoidal oscillator with amplitude controllability. In: Proceedings of the 4th Joint International Conference on Information and Communication technology, Electronics and Electrical Engineering (2014)

  59. Phatsornsiri, P.; Lamun, P.; Kumngern, M.; Torteanchai, U.: Current-mode third-order quadrature oscillator using VDTAs and grounded capacitors. In: Proceedings of the 4th IEEE Joint International Conference on Information and Communication Technology, Electronic and Electrical Engineering (2014)

  60. Siripruchyanun, M.; Jaikla, W.: Realization of current controlled current differencing transconductance amplifier (CCCDTA) and its applications. ECTI Trans. Electr. Eng. Electron. Commun. 5, 41–50 (2007)

    Google Scholar 

  61. Jantakun, A.; Jaikla, W.: Current-mode quadrature oscillator based on CCCDTAs with noninteractive dual-current control for both condition of oscillation and frequency of oscillation. Turk. J. Electr. Comput. Sci. 21, 81–89 (2013)

    Google Scholar 

  62. Chien, H.-C.; Wang, J.-M.: Dual-mode resistorless sinusoidal oscillator using single CCCDTA. Microelectron. J. 44, 216–224 (2013)

    Article  Google Scholar 

  63. Jaikla, W.; Lahiri, A.: Resistor-less current-mode four-phase quadrature oscillator using CCCDTAs and grounded capacitors. Int. J. Electron. Commun. (AEU) 66, 214–218 (2012)

    Article  Google Scholar 

  64. Li, Y.: A new single MCCCDTA based Wien-bridge oscillator with AGC. Int. J. Electron. Commun. (AEU) 66, 153–156 (2012)

    Article  Google Scholar 

  65. Kumngern, M.: New current-mode first-order allpass filter using a single CCCDTA. In: International Symposium on Integrated Circuits, pp. 364–367 (2011)

  66. Kumngern, M.; Junnapiya, S.: Current-mode third-order quadrature oscillator using minimum elements. In: Proceedings of the International Conference on Electrical Engineering and Informatics (2011)

  67. Keawon, R.; Jaikla, W.: A resistor-less current-mode quadrature sinusoidal oscillator employing single CCCDTA and grounded capacitors. Prz. Elektrotechn. (Electr. Rev.) 87, 138–141 (2011)

  68. Sakul, C.; Jaikla, W.; Dejhan, K.: New resistorless current-mode quadrature oscillators using 2 CCCDTAs and grounded capacitors. Radioengineering 20, 890–897 (2011)

    Google Scholar 

  69. Prasad, D.; Bhaskar, D.R.; Singh, A.K.: Electronically controllable grounded capacitor current-mode quadrature oscillator using single MO-CCCDTA. Radioengineering 20, 354–359 (2011)

    Google Scholar 

  70. Jaikla, W.; Prommee, P.: Electronically tunable current-mode multiphase sinusoidal oascillator employing CCCDTA-based allpass filters with only grounded passive elements. Radioengineering 20, 594–599 (2011)

    Google Scholar 

  71. Lahiri, A.; Misra, A.; Gupta, K.: Novel current-mode quadrature oscillators with explicit-current-outputs using CCCDTA. In: Proceedings of the 19th International Conference on Radioelektronika, pp. 47–50 (2009)

  72. Siripruchyanun, M.M.; Jaikla, W.: CMOS current-controlled current differencing transconductance amplifier and applications to analog signal processing. Int. J. Electron. Commun. (AEU) 62, 277–287 (2008)

    Article  Google Scholar 

  73. Jaikla, W.; Siripruchyanun, M.: CCCDTAs-based versatile quadrature oscillator and universal biquad filter. In: Proceedings of the International Conference Electrical/Electronics, Computer, Telecommunication and Information Technology, pp. 1065–1068 (2007)

  74. Jaikla, W.; Siripurchyanun, M.: A versatile quadrature oscillator and universal biquad filter using dual-output current controlled current differencing transconductance amplifier. In: Proceedings of the International Symposium on Communications and Information Technologies, pp. 1072–1075 (2006)

  75. Kumngern, M.; Junnapiya, S.: Current-mode third-order quadrature oscillator using minimum elements. In: Proceedings of the International Conference on Electrical Engineering and Informatics (2011)

  76. Siripongdee, S.; Suwanjanm, P.; Tuntrakool, S.; Jaikla, W.: Electronically controllable current-mode multiphase sinusoidal oscillator for biomedical tissue measurement systems. Int. J. Biosci. Biochem. Bioinform. 4, 57–59 (2014)

    Google Scholar 

  77. Pinkaew, P.; Suwanjan, P.; Jaikla, W.: Simple quadrature sinusoidal oscillator with grounded elements. Int. J. Comput. Electr. Eng. 5, 362–365 (2013)

    Article  Google Scholar 

  78. Kumngern, M.; Lamun, P.: Allpass section-based mixed-mode quadrature sinusoidal oscillator. In: Proceedings of the IEEE International Conference on Control System, Computing and Engineering, pp. 226–229 (2013)

  79. Chien, H.-C.: Current-mode resistorless sinusoidal oscillators and a dual-phase square-wave generator using current-controlled current-differencing transconductance amplifiers and grounded capacitors. Indian J. Eng. Mater. Sci. 23, 7–19 (2016)

    Google Scholar 

  80. Chen, H.-P.: Electronically tunable quadrature oscillator using grounded components with current and voltage outputs. Sci. J. Article ID 572165 (2014)

  81. Lahiri, A.: Resistor-less mixed-mode quadrature sinusoidal oscillator. Int. J. Comput. Electr. Eng. 2, 63–66 (2010)

    Article  Google Scholar 

  82. Herencsar, N.; Koton, J.; Vrba, K.; Lahiri, A.; Cicekoglu, O.: Current-controlled CFTA-based current-mode SITO universal filter and quadrature oscillator. In: Proceedings of the International Conference on Applied Electronics (2010)

  83. Li, Y.A.: Electronically tunable current-mode biquadratic filter and four-phase quadrature oscillator. Microelectron. J. 45, 330–335 (2014)

    Article  Google Scholar 

  84. Tanaphatsiri, C.; Narongrat, N.: Electronically tunable low-component-count current-mode quadrature oscillator using CCCFTA. In: Proceedings of the Hong Kong International Conference on Engineering and Applied Sciences, pp. 240–245 (2012)

  85. Maneewan, S.; Sreewirote, B.; Jaikla, W.: A current-mode quadrature oscillator using a minimum number of active and passive components. In: Proceedings of the IEEE International Conference on Vehicular Electronics and Safety, pp. 312–315 (2011)

  86. Lamun, P.; Kumngern, M.; Torteanchai, U.; Sarsitthithum, K.: Tunable current-mode quadrature sinusoidal oscillator employing CCCFTAs and grounded capacitors. In: Proceedings of the 4th International Conference on Intelligent Systems, Modelling and Simulation, pp. 665–668 (2013)

  87. Srisakultiew, S.; Siripruchyanun, M.; Jaikla, W.: Single-resistance-controlled current-mode quadrature sinusoidal oscillator using single CCCFTA with grounded elements. In: Proceedings of the 36th International Conference on Telecommunications and Signal Processing, pp. 436–439 (2013)

  88. Uttaphut, P.: Realization of electronically tunable current-mode multiphase sinusoidal oscillators using CFTAs. Int. J. Sch. Sci. Res. Innov. 6, 643–646 (2012)

    Google Scholar 

  89. Kumngern, M.; Torteanchai, U.: A current-mode four-phase third-order quadrature oscillator using a MCCCFTA. In: Proceedings of the IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, pp. 156–159 (2012)

  90. Koton, J.; Herencsar, N.; Venclovsky, M.: History, progress and new results in synthetic passive element design employing CFTAs. Int. J. Adv. Telecommun. Electrotech. Signals Syst. 4, 15–26 (2015)

    Google Scholar 

  91. Xu, J.; Wang, C.; Jin, J.: Current differencing cascaded transconductance amplifier (CDCTA) and its applications on current-mode nth-order filters. Circuits Syst. Signal Process. 32, 2047–2063 (2013)

    Article  Google Scholar 

  92. Pitaksuttayaprot, K.; Jaikla, W.: Electronically tunable current-mode multiphase sinusoidal oscillator employing CDCTA-based allpass filters. In: Proceedings of the International Conference on Circuits, Systems and Control, pp. 69–73 (2014)

  93. Smith, K.C.; Sedra, A.: The current conveyor—a new circuit building block. IEEE Proc. 56, 1368–1369 (1968)

    Article  Google Scholar 

  94. Sedra, A.; Smith, K.C.: A second generation current conveyor and its applications. IEEE Trans. Circuit Theory CT-17, 132–134 (1970)

  95. Khatoon, S.: Practical realization of current mode active elements using AD844 and some applications. Indian J. Appl. Res. 3, 303–307 (2013)

    Article  Google Scholar 

  96. Yuce, E.; Minaei, S.: Realization of various active devices using commercially available AD844s and external resistors. Electron. World 113(157), 46–49 (2007)

    Google Scholar 

  97. Horng, J.-W.: Current/voltage-mode third-order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian J. Pure Appl. Phys. 49, 494–498 (2011)

    Google Scholar 

  98. Bhaskar, D.R.; Abdalla, K.K.; Senani, R.: New SRCO with explicit current-mode output using two CCs and grounded capacitors. Turk. J. Electr. Eng. Comput. Sci. 19, 235–242 (2011)

    Google Scholar 

  99. Bajer, J.; Lahiri, A.; Biolek, D.: Current-mode CCII+ based oscillator circuits using a conventional and a modified Wien-bridge with all capacitors grounded. Radioengineering 20, 245–250 (2011)

    Google Scholar 

  100. Lahiri, A.: Current-mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors: a supplement. Analog Integr. Circuits Signal Process. 71, 129–131 (2011)

    Article  Google Scholar 

  101. Bhaskar, D.R.; Kasim, K.A.; Senani, R.: New SRCO with explicit current-mode output using two CC’s and grounded capacitors. In: Proceedings of the International Conference on Electrical and Electronics Engineering, pp. II-42/II-44 (2009)

  102. Soliman, A.M.: On the generation of CCII and ICCII oscillators from three Op Amps oscillator. Microelectron. J. 41, 680–687 (2010)

    Article  Google Scholar 

  103. Lahiri, A.: Additional realizations of single-element-controlled oscillators using single ICCII-. Int. J. Comput. Electr. Eng. 1, 303–306 (2009)

    Article  Google Scholar 

  104. Khan, I.A.; Beg, P.; Ahmed, M.T.: First order current mode filters and multiphase sinusoidal oscillators using CMOS MOCCIIS. Arab. J. Sci. Eng. 32(2C), 119–126 (2007)

    Google Scholar 

  105. Horng, J.-W.; Chou, H.-P. and Shiu, I.-C.: Current-mode and voltage-mode quadrature oscillator employing multiple outputs CCIIs and grounded capacitors. In: Proceedings of the International Symposium on Circuits and Systems, pp. 441–444 (2006)

  106. Senani, R.; Gupta, S.S.: Novel SRCOs using first generation current conveyor. Int. J. Electron. 87, 1187–1192 (2000)

    Article  Google Scholar 

  107. Soliman, A.M.: Synthesis of grounded capacitor and grounded resistor oscillators. J. Frankl. Inst. 336, 735–746 (1999)

    Article  MATH  Google Scholar 

  108. Soliman, A.M.: Current mode CCII oscillators using grounded capacitors and resistors. Int. J. Circuit Theory Appl. 26, 431–438 (1998)

    Article  MATH  Google Scholar 

  109. Soliman, A.M.: Current-mode oscillators using single output current conveyors. Microelectron. J. 29, 907–912 (1998)

    Article  Google Scholar 

  110. Lahiri, A.: New canonic active RC sinusoidal oscillator circuits using second-generation current conveyors with applications as a wide-frequency digitally controlled sinusoid generator. Act. Passive Electron. Compon. Article ID 274394 (2011)

  111. Horng, J.-W.: Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors. Indian J. Pure Appl. Phys. 49, 494–498 (2011)

    Google Scholar 

  112. Lahiri, A.: Current-mode variable frequency quadrature sinusoidal oscillators using two CCs and four passive components including grounded capacitors. Analog Integr. Circuits Signal Process. 71, 303–311 (2012)

    Article  Google Scholar 

  113. Bhaskar, D.R.; Prasad, D.; Imam, S.A.: Grounded-capacitor SRCos realized through a simple general scheme. Frequenz 58, 175–177 (2004)

    Article  Google Scholar 

  114. Martinez, P.A.M.; Sanz, B.M.M.: Generation of two integrator loop variable frequency sinusoidal oscillator. Int. J. Electron. 92, 619–629 (2005)

    Article  Google Scholar 

  115. Fabre, A.; Saaid, O.; Wiest, F.; Boucheron, C.: Current controllable bandpass filter based on translinear conveyors. Electron. Lett. 31, 1727–1728 (1995)

    Article  Google Scholar 

  116. Summart, S.; Thongsopa, C.; Jaikla, W.: CCCIIs-based sinusoidal quadrature oscillators with non-interactive control of condition and frequency. Indian J. Pure Appl. Phys. 52, 277–283 (2014)

    Google Scholar 

  117. Songkla, S.N.; Jaikla, W.: Realization of electronically tunable current-mode first-order allpass filter and its application. Int. Sch. Sci. Res. Innov. 6, 357–360 (2012) (Published also in: Int. J. Electron. Electr. Eng. 6, 40–43 (2012))

  118. Maheshwari, S.; Khan, I.A.: Current controlled third order quadrature oscillator. IEE Proc. Circuits Devices Syst. 152, 605–607 (2005)

    Article  Google Scholar 

  119. Songkla, S.N.; Jaikla, W.; Sreewirote, B.: A new resistor-less current-mode sinusoidal quadrature oscillator using CCCIIs. In: Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems, pp. 212–2153 (2011)

  120. Jaikla, W.; Sonkgla, S.N.: Design of current-mode sinusoidal quadrature oscillator using CCCIIs. Int. J. Microelectron. Comput. Sci. 2, 95–99 (2011)

    Google Scholar 

  121. Jaikla, W.; Singthong, P.; Siripruchyanun, M.: Realization of electronically controllable first-order current-mode allpass filter using CCCIIs and its application. Int. J. Microelectron. Comput. Sci. 2, 63–67 (2011)

    Google Scholar 

  122. Songkla, S.N.; Jaikla, W.; Sreewirote, B.: A new resistor-less current-mode sinusoidal quadrature oscillator using CCCIIs. In: Proceedings of the 18th International Conference on Mixed Design of Integrated Circuits and Systems, pp. 212–215 (2011)

  123. Kumngern, M.; Chanwutitum, J.; Dejhan, K.: Electronically tunable multiphase sinusoidal oscillator using translinear current conveyors. Analog Integr. Circuits Signal Process. 65, 327–334 (2010)

    Article  Google Scholar 

  124. Maheshwari, S.: Current-mode third-order quadrature oscillator. IET Circuits Devices Syst. 4, 188–195 (2010)

    Article  Google Scholar 

  125. Minhaj, N.: Multiphase mixed-mode sinusoidal oscillator using second-generation multioutput current-controlled current conveyor. Int. J. Recent Trends Eng. 1, 297–300 (2009)

    Google Scholar 

  126. Hasan, S.; Khan, I.A.: Translinear-C function generator using MOCCCIIs. Arab. J. Sci. Eng. 32(2C), 127–132 (2007)

    Google Scholar 

  127. Abuelma’atti, M.T.; Al-Qahtani, M.A.: A new current-controlled multiphase oscillator using translinear current conveyors. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 45, 881–885 (1998)

    Article  Google Scholar 

  128. Abuelma’atti, M.T.; Tassaduq, N.A.: A novel current-controlled oscillator using translinear current conveyors. Frequenz 52, 123–124 (1998)

    Google Scholar 

  129. Maheshwari, S.; Khan, I.A.: Mixed-mode quadrature oscillator using translinear conveyor and grounded capacitors. In: Proceedings of the International Conference on Multimedia, Signal Processing and Communication Technologies, pp. 153–155 (2011)

  130. Bhaskar, D.R.; Prasad, D.; Senani, R.; Jain, M.K.; Singh, V.K.; Srivastava, D.K.: New fully-uncoupled current-controlled sinusoidal oscillator employing grounded capacitors. Am. J. Electr. Electron. Eng. 4, 81–84 (2016)

    Google Scholar 

  131. Kumngern, M.; Knobnob, B.; Dejhan, K.: Single-resistance-controlled current-mode quadrature sinusoidal oscillator. In: Proceedings of the 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (2009)

  132. Zeki, A.; Toker, A.: The dual-X current conveyor (DXCCII)P a new active device for tunable continuous-time filters. Int. J. Electron. 89, 913–923 (2002)

    Article  Google Scholar 

  133. Maheshwari, S.; Ansari, M.S.: Catalog of realizations for DXCCII using commercially available ICs and applications. Radioengineering 21, 281–289 (2012)

    Google Scholar 

  134. Beg, P.; Siddiqi, M.A.; Ansari, M.S.: Multi output filter and four phase sinusoidal oscillator using CMOS DX-MOCCII. Int. J. Electron. 98, 1185–1198 (2011)

    Article  Google Scholar 

  135. Ansari, M.S.; Khan, I.A.; Beg, P.; Nahhas, A.M.: Three phase mixed-mode CMOS VCO with grounded passive components. Electr. Electron. Eng. 3, 149–155 (2013)

    Google Scholar 

  136. Chaturvedi, B.; Mohan, J.: Single active element based mixed-mode quadrature oscillator using grounded components. Istanb. Univ. J. Electr. Electron. Eng. (IU-JEEE), 15, 1897–1906 (2015)

  137. Surakampontorn, W.; Thitimajshima, W.: Integrable electronically tunable current conveyors. IEE Proc. G 135, 71–77 (1988)

    Google Scholar 

  138. Senani, R.: Novel circuit implementation of current conveyors using an OA and OTA. Electron. Lett. 16, 2–3 (1980)

    Article  Google Scholar 

  139. Minaei, S.; Sayin, O.K.; Kuntman, H.: A new CMOS electronically tunable current conveyor and its application to current-mode filters. IEEE Trans. Circuits Syst. I Regul. Pap. 53, 1448–1457 (2006)

    Article  Google Scholar 

  140. Sotner, R.; Jerabek, J.; Langhammer, L.; Polak, J.; Herencsar, N.; Prokop, R.; Petrezela, J.; Jaikla, W.: Comparison of two solutions of quadrature oscillators with linear control of frequency of oscillation employing modern commercially available devices. J. Circuits Syst. Signal Process. (2015). doi:10.1007/s00034-015-0015-7

    MathSciNet  Google Scholar 

  141. Sotner, R.; Lahiri, A.; Jerabek, J.; Herencsar, N.; Koton, J.; Dostal, T.; Vrba, K.: Special type of three-phase oscillator using current gain control for amplitude stabilization. Int. J. Phys. Sci. 7, 3089–3098 (2012)

    Google Scholar 

  142. Kumngern, M.; Phatsornsiri, P.; Dejhan, K.: Tunable sinusoidal oscillator using CCII with variable current gain. In: Proceedings of the Eleventh International Conference on ICT and Knowledge Engineering (2013)

  143. Kumngern, M.; Tuntrakool, S.: Quadrature oscillator with independent frequency control using ECCIIs. In: Proceedings of the IEEE TENCON (2014)

  144. Chiu, W.; Liu, S.I.; Tsao, H.W.; Chen, J.J.: CMOS differential difference current conveyors and their applications. IEE Proc. Circuits Devices Syst. 143, 91–96 (1996)

    Article  MATH  Google Scholar 

  145. Pharuttanachai, K.; Jaikla, W.: Third order current-mode quadrature sinusoidal oscillator with high output impedances. Int. Sch. Sci. Res. Innov. 7, 398–401 (2013)

    Google Scholar 

  146. Torteanchai, U.; Kumngern, M.: Current-tunable current-mode all-pass section using DDCC. In: Proceedings of the International Conference on Electronic Devices, Systems and Applications, pp. 217–220 (2011)

  147. Aggarwal, V.: Novel canonic current mode DDCC based SRCO synthesized using a genetic algorithm. Analog Integr. Circuits Signal Process. 40, 83–85 (2004)

    Article  Google Scholar 

  148. Phanrattanachai, K.; Jaikla, W.: Design of third order current-mode quadrature sinusoidal oscillator with high output impedances. In: Proceedings of the International Conference on Circuits, Systems and Control, pp. 46–49 (2014)

  149. Gupta, S.S.; Senani, R.: Comments on “CMOS differential difference current conveyors and their applications”. IEE Proc. Circuits Devices Syst. 148, 335–336 (2001)

    Article  Google Scholar 

  150. Kilinc, S.; Jain, V.; Aggrawal, V.; Cam, U.: Catalogue of variable frequency and single-resistance-controlled oscillators employing a single differential difference complementary current conveyor. Frequenz 60, 142–146 (2006)

    Article  Google Scholar 

  151. Gupta, S.S.; Senani, R.: Realisation of current-mode SRCOs using all grounded passive elements. Frequenz 57, 25–36 (2003)

    Article  Google Scholar 

  152. Pal, K.: Modified current conveyors and their applications. Microelectron. J. 20, 37–40 (1989)

    Article  Google Scholar 

  153. Chien, H.-C.: Voltage- and current-modes sinusoidal oscillator using a single differential voltage current conveyor. J. Appl. Sci. Eng. 16, 395–404 (2013)

    Google Scholar 

  154. Chaturvedi, B.; Maheshwari, S.: Third-order quadrature oscillator circuit with current and voltage outputs. Int. Sch. Res. Netw. (ISRN Electron.). Article ID 385062 (2013)

  155. Chaturvedi, B.; Maheshwari, S.: Second order mixed mode quadrature oscillator using DVCCs and grounded components. Int. J. Comput. Appl. 58, 42–45 (2012)

    Google Scholar 

  156. Maheshwari, S.; Chaturvedi, B.: High output impedance CMQOs using DVCCs and grounded components. Int. J. Circuit Theory Appl. 39, 427–435 (2011)

    Article  Google Scholar 

  157. Maheshwari, S.: Quadrature oscillator using grounded components with current and voltage outputs. IET Circuits Devices Syst. 3, 153–160 (2009)

    Article  Google Scholar 

  158. Horng, J.-W.: Current-mode quadrature oscillator with grounded capacitors and resistors using two DVCCs. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E86-A, 2152–2154 (2003)

  159. Kumar, P.; Keskin, A.U.; Pal, K.: DVCC-based single element controlled oscillators using all-grounded components and simultaneous current–voltage mode outputs. Frequenz 59, 1–5 (2005)

  160. Srivastava, M.; Prasad, D.: VDCC based dual-mode quadrature sinusoidal oscillator with outputs at appropriate impedance levels. Theor. Appl. Electr. Eng. 14, 168–177 (2016)

    Google Scholar 

  161. Prasad, D.; Bhaskar, D.R.; Srivastava, M.: New single VDCC-based explicit-current-mode SRCO employing all grounded passive components. Electronics 18, 81–88 (2014)

    Google Scholar 

  162. Sotner, R.; Herencsar, N.; Jerabek, J.; Prokop, R.; Kartci, A.; Dostal, T.; Vrba, K.: Z-copy controlled gain voltage differencing current conveyor: advanced possibilities in direct electronic control of first order filter. Elektron. Elektrotech. 20, 77–83 (2014)

    Google Scholar 

  163. Sotner, R.; Jerabek, J.; Petrzela, J.; Herencsar, N.; Prokop, R.; Vrba, K.: Second-order simple multiphase oscillator using Z-copy controlled-gain voltage differencing current conveyor. Elektron. Elektrotech. 20, 13–18 (2014)

    Google Scholar 

  164. Gupta, S.S.; Senani, R.: Grounded-capacitor current-mode SRCO: novel application of DVCCC. Electron. Lett. 36, 195–196 (2000)

    Article  Google Scholar 

  165. Aggarwal, V.; Kilinc, S.; Cam, U.: Minimum component SRC and VFO using single DVCCC. Analog Integr. Circuits Signal Process. 49, 181–185 (2006)

    Article  Google Scholar 

  166. El-Adawy, A.A.; Soliman, A.M.; Elwan, H.O.: A novel flly differential current conveyor and applications for analog VLSI. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47, 306–313 (2000)

    Article  Google Scholar 

  167. Horng, J.-W.; Hou, C.-L.; Chang, C.-M.; Cheng, S.-T.; Su, H.-Y.: Current or/and voltage-mode quadrature oscillators with grounded capacitors and resistors using FDCCIIs. WSEAS Trans. Circuits Syst. 7, 129–138 (2008)

    Google Scholar 

  168. Horng, J.-W.; Hou, C.-L.; Chang, C.-M.; Chou, H.-P.; Lin, C.-T.; Wen, Y.-H.: Quadrature oscillators with grounded capacitors and resistors using FDCCIIs. ETRI J. 28, 486–494 (2006)

    Article  Google Scholar 

  169. Chang, C.M.; Al-Hashimi, B.M.; Chen, H.P.; Tu, S.H.; Wan, J.A.: Current mode single resistance controlled oscillators using only grounded passive components. Electron. Lett. 38, 1071–1072 (2002)

    Article  Google Scholar 

  170. Mohan, J.; Chaturvedi, B.; Maheshwari, S.: Low voltage mixed-mode multi phase oscillator using single FDCCII. Electronics 20, 36–42 (2016)

    Google Scholar 

  171. Lahiri, A.; Jaikla, W.; Siripruchyanun, M.: First CFOA-based explicit-current-output quadrature sinusoidal oscillators using grounded capacitors. Int. J. Electron. 100, 259–273 (2013)

    Article  Google Scholar 

  172. Lahiri, A.; Jaikla, W.; Siripruchyanun, M.: Explicit-current-output second-order sinusoidal oscillators using two CFOAs and grounded capacitors. Int. J. Electron. Commun. (AEU) 65, 669–672 (2011)

    Article  Google Scholar 

  173. Gupta, S.S.; Sharma, R.K.; Bhaskar, D.R.; Senani, R.: Sinusoidal oscillators with explicit current output employing current-feedback op-amps. Int. J. Circuit Theory Appl. 38, 131–147 (2010)

    MATH  Google Scholar 

  174. Senani, R.; Sharama, R.K.: Explicit-current-output sinusoidal oscillators employing only a single current-feedback op-amp. IEICE Electron. Express 2, 14–18 (2005)

    Article  Google Scholar 

  175. Gupta, S.S.; Senani, R.: State variable synthesis of single resistance controlled grounded capacitor oscillators using only two CFOAs. IEE Proc. Circuits Devices Syst. 145, 135–138 (1998)

    Article  Google Scholar 

  176. Gupta, S.S.; Senani, R.: State variable synthesis of single-resistance-controlled grounded capacitor oscillators using only two CFOAs: additional new realizations. IEE Proc. Circuits Devices Syst. 145, 415–418 (1998)

    Article  Google Scholar 

  177. Gupta, S.S.; Sharma, R.K.; Bhaskar, D.R.; Senani, R.: Synthesis of sinusoidal oscillators with explicit-current output using current feedback op-amps. In: Proceedings of the 5th WSEAS International Conference on Circuits, Systems, Electronics, Control and Signal Processing, pp. 242–245 (2006)

  178. Abuelma’atti, M.T.; Alsuhaibani, E.S.: New current-feedback operational-amplifier based sinusoidal oscillators with explicit current outputs. Analog Integr. Circuits Signal Process. 85, 513–523 (2015)

    Article  Google Scholar 

  179. Siripruchyanun, M.; Chanapromma, C.; Silapan, P.; Jaikla, W.: BiCMOS current-controlled current feedback amplifier (CC-CFA) and its applications. WSEAS Trans. Electron. 5, 203–219 (2008)

    Google Scholar 

  180. Chanapromma, C.; Maneetien, N.; Siripruchyanun, M.: A practical implementation of CC-CFA based on commercially available ICs and its applications. In: Proceedings of the ECTI-Con, pp. 564–567 (2009)

  181. Kumbun, J.; Silapan, P.; Siripruchyanun, M.; Prommee, P.: A current-mode quadrature oscillator based on CC-CFAs. In: Proceedings of the 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunication and Information Technology, pp. 542–545 (2009)

  182. Gupta, S.S.; Senani, R.: Grounded-capacitor SRCOs using a single differential difference complementary current feedback amplifier. IEE Proc. Circuits Devices Syst. 152, 38–48 (2005)

    Article  Google Scholar 

  183. Huijsing, J.H.; De Korte, J.: Monolithic nullor—a universal active network element. IEEE J. Solid-State Circuits SC-12, 59–64 (1977)

  184. Cam, U.; Toker, A.; Cicekoglu, O.; Kuntman, H.: Current-mode high output impedance sinusoidal oscillator configuration employing single FTFN. Analog Integr. Circuits Signal Process. 24, 231–238 (2000)

    Article  Google Scholar 

  185. Abuelma’atti, M.T.; Al-Zaher, H.A.: Current-mode sinusoidal oscillators using FTFN. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46, 69–74 (1999)

    Article  Google Scholar 

  186. Abuelma’atti, M.T.; Al-Zaher, H.A.: Current-mode sinusoidal oscillators using two FTFNs. In: Proceedings of the National Science Council, ROC (A), vol. 22, pp. 758–764 (1998)

  187. Senani, R.: On equivalent forms of single O-Amp sinusoidal RC oscillators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 41, 617–624 (1994)

    Article  Google Scholar 

  188. Prokop, R.; Musil, V.: New modern circuit block CCTA and some its applications. In: Proceedings of the Fourteen International Conference on Electronics, pp. 93–98 (2005)

  189. Sotner, R.; Slezak, J.; Dostal, T.: Tunable oscillator using two CCTA-s and only grounded passive elements. In: Proceedings of the 19th International Conference on Environment and Electrical Engineering (2010)

  190. Lahiri, A.: Explicit-current-output quadrature oscillator using second-generation current conveyor transconductance amplifier. Radioengineering 18, 522–526 (2009)

    Google Scholar 

  191. Thosdeekoraphat, T.; Summert, S.; Saetiaw, C.; Santalunai, S.; Thongsopa, C.: CCTAs based current-mode quadrature oscillator with high output impedances. Int. J. Electron. Electr. Eng. 1, 52–56 (2013)

    Article  Google Scholar 

  192. Siripruchyanun, M.; Jaikla, W.: Current controlled current conveyor transconductance amplifier (CCCCTA): a building block for analog signal processing. Electr. Eng. 90, 443–453 (2008)

    Article  Google Scholar 

  193. Kumngern, M.; Chanwutitum, J.: Single MCCCTA-based mixed-mode third-order quadrature oscillator. In: Proceedings of the 4th International Conference on Communications and Electronics, pp. 426–429 (2012)

  194. Jantakun, A.; Sa-Ngiamvibool, W.: Current-mode sinusoidal oscillator using current controlled current conveyor transconductance amplifier. Rev. Roum. Sci. Tech. 58, 415–423 (2013)

    Google Scholar 

  195. Pitaksuttayaprot, K.; Jaikla, W.: Implementation of second order current-mode quadrature sinusoidal oscillator with current controllability. Int. J. Sch. Sci. Res. Innov. 7, 402–404 (2013)

    Google Scholar 

  196. Jaikla, W.; Noppakarn, A.; Lawanwisut, S.: New gain controllable resistor-less current-mode first order allpass filter and its application. Radioengineering 21, 312–316 (2012)

    Google Scholar 

  197. Uttaphut, P.: New current-mode multiphase sinusoidal oscillators based on CCCCTA-based lossy integrators. Prz. Elektrotech. (Electr. Rev.) 88, 291–295 (2012)

    Google Scholar 

  198. Thosdeekoraphat, T.; Summert, S.; Thongsopa, C.: Current-mode sinusoidal quadrature oscillator using single dual-output current controlled current conveyor transconductance amplifier (DO-CCCCTA). Aust. J. Basic Appl. Sci. 7, 230–236 (2013)

    Google Scholar 

  199. Duangmalai, D.; Jaikla, W.: Realization of current-mode quadrature oscillator based on third order technique. ACEEE Int. J. Electr. Power Eng. 2, 46–49 (2011)

    Google Scholar 

  200. Tanaphatsiri, C.; Jaikla, W.: Electronically tunable four phase quadrature oscillator employing current-controlled current conveyor transconductance amplifiers. In: Proceedings of the Sixth IEEE International Symposium on Electronic Design, Test and Applications, pp. 89–92 (2011)

  201. Bumrongchoke, T.; Jaikla, W.; Siripruchyanun, M.: An electronic controllable, simple current-mode oscillator using single MO-CCCCTA and grounded capacitors. In: Proceedings of the 1st International Conference on Technical Education, pp. 217–220 (2010)

  202. Lawanwisut, S.; Siripruchyanun, M.: High output-impedance current-mode third-order quadrature oscillator based on CCCCTAs. In: Proceedings of the IEEE Region 10 Conference, pp. 1–4 (2009)

  203. Pisutthipong, N.; Silapan, P.; Siripurchyanun, M.: CC-CCTA-based current-mode quadrature oscillator. In: Proceedings of the Seventh PSU Engineering Conference, pp. 302–305 (2009)

  204. Duangmalai, D.; Jaikla, W.: Realizaion of current-mode quadrature oscillator based on third order technique. In: Proceedings of the International Conference on Advances in Communication and Information Technology, pp. 63–66 (2011)

  205. Sa-Ngiamvibool, W.; Jantakun, A.: Quadrature oscillator using CCCCTAs and grounded capacitors with amplitude controllability. Int. J. Electron. 101, 1737–1758 (2014)

    Article  Google Scholar 

  206. Kumngern, M.; Torteanchai, U.: Current-controlled quadrature oscillator using a single ZC-CG-CCCCTA. In: Proceedings of the Second International Conference on Digital Information and Communication Technology and Its Applications, pp. 267–270 (2012)

  207. Maiti, S.; Pal, R.R.: Dual mode quadrature oscillator employing single curren controlled current conveyor transconductance amplifier. Int. J. Innov. Res. Sci. Technol. 2, 3105–3112 (2013)

    Google Scholar 

  208. Jantakun, A.: Current-mode quadrature oscillator using CCCCTAs with non-interactive current control for CO, FO and amplitude. J. Microelectron. Electron. Compon. Mater. 45, 47–56 (2015)

    Google Scholar 

  209. Khaw-ngam, K.; Lamun, P.; Kumngern, M.; Phasukkit, P. and Dejhan, K.: Current-mode four-phase quadrature oscillator using a MCCCCTA and grounded capacitors. In: Proceedings of the 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (2012)

  210. Phanikhom, S.; Jantakun, A.: Simple current-mode sinusoidal oscillator using single CCCCTA and grounded capacitors. In: Proceedings of the 4th Joint International Conference on Information and Communication Technology, Electronics and Electrical Engineering (2014)

  211. Srakaew, P.; Muenthom, A.; Panikhom, S.; Jantakun, A.: Current-mode sinusoidal oscillator based-on CCCCTAs and grounded capacitors with amplitude controllable. J. Sci. Technol. MSU 35, 275–279 (2016)

    Google Scholar 

  212. Jantakun, A.; Pisutthipong, N.; Siripruchyanun, M.: A synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs. In: Proceedings of the 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and Information Technology, pp. 560–563 (2009).

  213. Jaikla, W.; Siripruchyanun, M.; Lahiri, A.: Resistorless dual-mode quadrature sinusoidal oscillator using a single active building block. Microelectron. J. 42, 135–140 (2011)

    Article  Google Scholar 

  214. Chien, H.-C.; Chen, C.-Y.: CMOS realization of single-resistance-controlled and variable frequency dual-mode sinusoidal oscillators employing a single DVCCTA with all-grounded passive components. Microelectron. J. 45, 226–238 (2014)

    Article  Google Scholar 

  215. Ayten, U.E.; Sagbas, M.; Sedef, H.: Current-mode leapfrog ladder filter using a new active block. Int. J. Electron. Telecommun. 64, 503–511 (2010)

    Article  Google Scholar 

  216. Ayten, U.E.; Sagbas, M.; Sedef, H.: Electronically tunable sinusoidal oscillator circuit with current and voltage outputs. Int. J. Electron. 99, 1133–1144 (2012)

    Article  Google Scholar 

  217. Sagbas, M.; Ayten, U.E.; Herencsar, N.; Minaei, S.: Current and voltage mode multiphase sinusoidal oscillators using CBTAs. Radioengineering 22, 24–33 (2013)

    Google Scholar 

  218. Acar, C.; Ozoguz, S.: A new versatile building block: current differencing buffered amplifier suitable for analog signal processing. Microelectron. J. 30, 157–160 (1999)

    Article  Google Scholar 

  219. Biolek, D.; Bajer, J.; Biolkova, V.; Kolka, Z.; Kubicek, M.: Z copy-controlled gain-current differencing buffered amplifier and its applications. Int. J. Circuit Theory Appl. 39, 257–274 (2011)

  220. Ozcan, S.; Toker, A.; Acar, C.; Kuntman, H.; Cicekoglu, O.: Single resistrance-controlled sinusoidal oscillators employing current differencing buffered amplifier. Microelectron. J. 31, 169–174 (2000)

    Article  Google Scholar 

  221. Biolek, D.; Biolkova, V.; Kolka, Z.; Bajer, J.: Digitally-controlled quadrature oscillators employing modified CDBAs. In: Proceedings of the International Conference on Emerging Trends in Engineering and Technology, pp. 40–46 (2013)

  222. Biolek, D.; Lahiri, A.; Jaikla, W.; Siripruchyanun, M.; Bajer, J.: Realization of electronically tunable voltage-mode/current-mode quadrature sinusoidal oscillator using ZC-CG-CDBA. Microelectron. J. 42, 1116–1123 (2011)

    Article  Google Scholar 

  223. Herencsar, N.; Vrba, K.; Koton, J.; Lattenberg, I.: The conception of differential-input buffered and transconductance amplifier (DBTA) and its application. IECE Electron. Express 6, 329–334 (2009)

    Article  Google Scholar 

  224. Vavra, J.; Bajer, J.; Biolek, D.: Differential-input buffered and transconductance amplifier-based all-pass filter and its application in quadrature oscillator. In: Proceedings of the 35th International Conference on Telecommunications and Signal Processing, pp. 411–415 (2012)

  225. Siripurchyanun, M.; Jaikla, W.: Cascadable current-mode biquad filter and quadrature oscillator using DO-CCCIIs and OTA. J. Circuits Syst. Signal Process. 28, 99–110 (2009)

    Article  MATH  Google Scholar 

  226. Jaikla, W.; Siripurchyanun, M.: A high-output impedance current-mode quadrature oscillator using DO-OTAs and DO-CCII. In: Proceedings of the 30th Electrical Engineering Conference, pp. 921–924 (2007)

  227. Dostal, T.; Pospisil, J.: Current and voltage conveyors—a family of three port immittance converters. In: Proceedings of the International Symposium on Circuits and Systems, pp. 419–422 (1982)

  228. Koton, J.; Herencsar, N.; Vrba, K.; Metin, B.: Current- and voltage-mode third-order quadrature oscillator. In: Proceedings of the 13th International Conference on Optimization of Electrical and Electronic Equipment, pp. 1203–1206 (2012)

  229. Chen, J.-J.; Chen, C.-C.; Tsao, H.-W.; Liu, S.-I.: Current-mode oscillators using single current follower. Electron. Lett. 27, 2056–2059 (1991)

    Article  Google Scholar 

  230. Gupta, S.S.; Senani, R.: New single-resistance-controlled oscillator configurations using unity-gain cells. Analog Integr. Circuits Signal Process. 46, 111–119 (2006)

    Article  Google Scholar 

  231. Senani, R.; Gupta, S.S.: Novel sinusoidal oscillators using only unity-gain voltage followers and current followers. IEICE Electron. Express 1, 404–409 (2004)

    Article  Google Scholar 

  232. Alzaher, H.A.: CMOS digitally programmable quadrature oscillators. Int. J. Circuit Theory Appl. 36, 953–966 (2008)

    Article  Google Scholar 

  233. Abuelma’atti, M.T.: Current-mode multiphase oscillator using current followers. Microelectron. J. 25, 457–461 (1994)

    Article  Google Scholar 

  234. Vavra, J.; Bajer, J.: Current-mode multiphase sinusoidal oscillator based on current differencing units. In: Proceedings of the International Conference on Electrical and Electronic Engineering, pp. 332–336 (2011)

  235. Vavra, J.; Bajer, J.: Current-mode multiphase sinusoidal oscillator based on current differencing units. Analog Integr. Circuits Signal Process. 74, 121–128 (2013)

    Article  Google Scholar 

  236. Adams, R.W.: Filtering in the log domain. In: Proceedings of the 63th Audio Engineering Society Convention, reprint 1470 (1979)

  237. Psychalinos, C.; Souliotis, G.: A log-domain multiphase sinusoidal oscillator. Int. J. Electron. Commun. 62, 622–626 (2008)

    Article  Google Scholar 

  238. Prommee, P.; Prapakorn, N.; Swamy, M.N.S.: Log-domain current-mode quadrature sinusoidal oscillator. Radioengineering 20, 600–607 (2011)

  239. Prommee, P.; Somdunyakanok, M.: Log-domain all-pass based multiphase sinusoidal oscillator. In: Proceedings of the International Conference on Telecommunications and Signal Processing, pp. 355–358 (2012)

  240. Prommee, P.; Sra-ium, N.; Dejhan, K.: High-frequency log-domain current-mode multiphase sinusoidal oscillator. IET Circuits Devices Syst. 4, 440–448 (2010)

    Article  Google Scholar 

  241. Prommee, P.; Wongpromoon, N.: Log-domain all-pass filter-based multiphase sinusoidal oscillators. Radioengineering 22, 14–23 (2013)

    Google Scholar 

  242. Prommee, P.; Sra-ium, N.; Dejhan, K.: Log-domain multiphase sinusoidal oscillator. In: Proceedings of the Midwest Symposium on Circuits and Systems (2011)

  243. Koton, J.; Vrba, K.; Herencsar, N.: Tuneable filter using voltage convetyors and current active elements. Int. J. Electron. 96, 787–794 (2009)

    Article  Google Scholar 

  244. Herencsar, N.; Lahiri, A.; Vrba, K.; Koton, J.: An electronically tunable current-mode quadrature oscillator using PCAs. Int. J. Electron. 99, 609–621 (2012)

    Article  Google Scholar 

  245. Souliotis, G.; Psychalinos, C.: Electronically controlled multiphase sinusoidal oscillators using current amplifiers. Int. J. Circuit Theory Appl. 37, 43–52 (2009)

    Article  Google Scholar 

  246. Panagopoulou, M.; Psychalinos, C.; Khanday, F.A.; Shah, N.A.: Sinh-domain multiphase sinusoidal oscillator. Microelectron. J. 44, 834–839 (2013)

    Article  Google Scholar 

  247. Abuelma’atti, M.T.; Khalifa, Z.J.: Fully uncoupled independent control of frequency and condition of oscillation: a caution. Int. J. Electron. Commun. 68, 1037–1040 (2014)

    Article  Google Scholar 

  248. Abuelma’atti, M.T.; Alsuhaibani, E.S.; Bin Obadi, A.S.; Khalifa, Z.J.: Independent control of frequency and condition of oscillation: a caution. Int. J. Electron. 100, 384–392 (2013)

    Article  Google Scholar 

  249. Singh, V.: Discussion on Barkhausen and Nyquist stability criteria. Analog Integr. Circuits Signal Process. 62, 327–332 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Taher Abuelma’atti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abuelma’atti, M.T. Recent Developments in Current-Mode Sinusoidal Oscillators: Circuits and Active Elements. Arab J Sci Eng 42, 2583–2614 (2017). https://doi.org/10.1007/s13369-016-2325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2325-x

Keywords

Navigation