Skip to main content

Advertisement

Log in

Investigation of Boron Addition on Densification and Cytotoxicity of Powder Injection Molded 316L Stainless Steel Dental Materials

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Powder injection molding (PIM) is a hybrid of powder metallurgy and plastic injection molding. It is used to develop metallic molded parts with intricate shapes and with improved properties compared with those offered by their wrought counterparts. PIM dental implants should exhibit biocompatibility, high density, good dimensional control, homogeneous properties and low manufacturing cost. In order to achieve these properties, the effect of boron (additive) addition on sintered density and of process effects on the biocompatibility of sintered implants was studied. In activated sintering, additives are used in small quantities to modify the sintering behavior of stainless steel. A constant amount of nanosize elemental boron (0–1.5 wt%) was admixed with 316L stainless steel and was compounded with complex binder to develop feedstocks using a z-blade mixer. Optimal solvent debinding parameters followed by an optimal sintering cycle played a vital role in the development of biocompatible and densified 316L stainless steel dental implants. Although all boron-containing formulations were injection-molded successfully, only PWA-0.5B-1230 samples were able to retain their shapes after sintering. It was concluded that 0.5 wt% addition of elemental boron favored the formation of 316L stainless steel with a sintered density of up to 98.5 % through the formation of a complex iron boride compound (B6Fe23) on the grain boundaries during the sintering process. The formation of a passive layer on the outer surface of implants was controlled using optimal sintering parameters. In in vitro analysis, the cytotoxicity assessment of sintered dental implants materials was determined using the direct and indirect contact techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Xu F., Niu Y., Hu X.F., Li Y.C., Qu H.Y., Kang D.: Role of Second Phase Powders on Microstructural Evolution During Sintering. Experimental Mechanics 54, 57–62 (2014)

    Article  Google Scholar 

  2. Fornabaio, M.; Palmero, P.; Traverso, R.; Esnouf, C.; Reveron, H.; Chevalier, J.; et al.: Zirconia-based composites for biomedical applications: role of second phases on composition, microstructure and zirconia transformability. J. Eur. Ceram. Soc. 14, 4039–4049 (2015)

  3. Aslam M., Ahmad F., BintiMegat Yusoff P.S.M., Muhamad N., Raza M.R., Irfan Shirazi M.: Effects of Admixed Titanium on Densification of 316L Stainless Steel Powder during Sintering. MATEC Web of Conferences 13, 04026 (2014)

    Article  Google Scholar 

  4. Raza M.R., Ahmad F., Muhamad N., Sulong A.B., Omar M.A., Akhtar M.N. et al.: Effects of solid loading and cooling rate on the mechanical properties and corrosion behavior of powder injection molded 316L stainless steel. Powder Technology 289, 135–142 (2016)

    Article  Google Scholar 

  5. Aslam M., Ahmad F., Yusoff P.S.M.B.M., Altaf K., Omar M.A., German R.M.: Powder injection molding of biocompatible stainless steel biodevices. Powder Technology 295, 84–95 (2016)

    Article  Google Scholar 

  6. German R., Munir Z.: The sintering of tantalum with transition metal additions. Powder Metallurgy 20, 145–150 (1977)

    Article  Google Scholar 

  7. Smith J.T.: Diffusion Mechanism for the Nickel-Activated Sintering of Molybdenum. Journal of Applied Physics 36, 595–598 (1965)

    Article  Google Scholar 

  8. German R.M., Munir Z.A.: Temperature sensitivity in the chemically activated sintering of hafnium. Journal of the Less Common Metals 46, 333–338 (1976)

    Article  Google Scholar 

  9. Schetky L.M., Johnson H.A.: Beryllium Technology: Conference sessions 1–4, pp. 779. Gordon and Breach, New York (1966)

    Google Scholar 

  10. Palmour H., Johnson D., Kuczynski G., Hooton N., Gibbs C.: Sintering and Related Phenomena, pp. 779. Gordon and Breach, New York (1967)

    Google Scholar 

  11. Chakravarty D., Chokshi A.H.: Influence of yttria and zirconia additions on spark plasma sintering of alumina composites. Journal of Materials Research 30, 1148–1156 (2015)

    Article  Google Scholar 

  12. Reshamwala A.S., Tendolkar G.S.: Powder-metallurgical review 1. Activated sintering, Part 1. Powder Met. Int. 1, 58 (1969)

    Google Scholar 

  13. Sorkhe Y., Aghajani H., Tabrizi A.T.: Mechanical alloying and sintering of nanostructured TiO 2 reinforced copper composite and its characterization. Materials & Design 58, 168–174 (2014)

    Article  Google Scholar 

  14. German R., d’Angelo K.: Enhanced sintering treatments for ferrous powders. International Metals Reviews 29, 249–272 (1984)

    Article  Google Scholar 

  15. Ye Y., Li X., Hu K., Qu S., Li Y.: Effects of Alloy Composition on Microstructure and Mechanical Properties of Iron-Based Materials Fabricated by Ball Milling and Spark Plasma Sintering. Metallurgical and Materials Transactions A 46, 476–487 (2015)

    Article  Google Scholar 

  16. Raja Annamalai A., Upadhyaya A., Agrawal D.: Effect of heating mode and electrochemical response on austenitic and ferritic stainless steels. Canadian Metallurgical Quarterly 54, 142–148 (2015)

    Article  Google Scholar 

  17. Prill, A.; Hayden, H.; Brophy, J.: The role of phase relationships in the activated sintering of tungsten. Trans. AIME 230 (1964)

  18. Miramontes J.C., Sánchez J.B., Calderón F.A., Villafañe A.M., Nava J.C.: Effect of boron additions on sintering and densification of a ferritic stainless steel. Journal of materials engineering and performance 19, 880–884 (2010)

    Article  Google Scholar 

  19. Brook R., Gilbart E., Shaw N., Eisele U.: Solid solution additives and the sintering of ceramics. Powder metallurgy 28, 105–107 (1985)

    Article  Google Scholar 

  20. Gülsoy H., Gunay V., Baykara T.: Influence of TiC, TiN and TiC (N) additions on sintering and mechanical properties of injection moulded titanium based metal matrix composites. Powder Metallurgy 58, 30–35 (2015)

    Article  Google Scholar 

  21. Seah M.P., Hondros E.D.: Grain Boundary Segregation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 335, 191–212 (1973)

    Article  Google Scholar 

  22. Mahathanabodee S., Palathai T., Raadnui S., Tongsri R., Sombatsompop N.: Effects of hexagonal boron nitride and sintering temperature on mechanical and tribological properties of SS316L/h-BN composites.. Materials & Design 46, 588–597 (2013)

    Article  Google Scholar 

  23. Szewczyk-nykiel, A.: The effect of the addition of boron on the densification, microstructure and properties of sintered 17-4 ph stainless steel wpływ dodatku boru na zagęszczenie, mikrostrukturę i właściwości spiekanej stali

  24. Bakan H., Heaney D., German R.: Effect of nickel boride and boron additions on sintering characteristics of injection moulded 316L powder using water soluble binder system. Powder metallurgy 44, 235–242 (2001)

    Article  Google Scholar 

  25. ISO-10993-5: Biological Evaluation of Medical Devices e Part 5: Tests for Cytotoxicity: In Vitro Methods. ANSI/AAMI, Arlington (1999)

  26. Youseffi M., Menzies I.A.: Injection moulding of WC–6Co powder using two new binder systems based on montanester waxes and water soluble gelling polymers. Powder metallurgy 40, 62–65 (1997)

    Article  Google Scholar 

  27. Aggarwal G., Park S.J., Smid I.: Development of niobium powder injection molding: Part I. Feedstock and injection molding. International Journal of Refractory Metals and Hard Materials 24, 253–262 (2006)

    Article  Google Scholar 

  28. Li Y., Li L., Khalil K.: Effect of powder loading on metal injection molding stainless steels. Journal of Materials Processing Technology 183, 432–439 (2007)

    Article  Google Scholar 

  29. Aslam, M.; Ahmad, F.; Yusoff, P.S.M.B.M.; Altaf, K.; Omar, M.A.; Abdul Khalil, H.P.S., et al.: Investigation of rheological behavior of low pressure injection molded stainless steel feedstocks. Adv. Mater. Sci. Eng. 2016, 9 (2016)

  30. Mills P.: Non-Newtonian behaviour of flocculated suspensions. Journal de Physique Lettres 46, 301–309 (1985)

    Article  Google Scholar 

  31. German R.: Powder Injection Molding, MPIF. Princeton, New Jersey (1990)

    Google Scholar 

  32. Gharehbaghi A.: Precipitation Study in a High Temperature Austenitic Stainless Steel Using Low Voltage Energy Dispersive X-ray Spectroscopy. Royal Institute of Technology, Stockholm (2012)

    Google Scholar 

  33. Raza, M.R.; Ahmad, F.; Muhamad, N.; Sulong, A.B.; Omar, M.; Akhtar, M.N., et al.: Effects of residual carbon on microstructure and surface roughness of PIM 316L stainless steel. In: InCIEC 2014, pp. 927–935. Springer, Berlin (2015)

  34. Krauss G.: Steels: Processing, Structure, and Performance. ASM International, Almere (2005)

    Google Scholar 

  35. Rawers J., Croydon F., Krabbe R., Duttlinger N.: Tensile characteristics of nitrogen enhanced PIM 316L stainless steel. Bulletin du Cercle d’Etudes des Metaux(France) 16, 5 (1995)

    Google Scholar 

  36. Khor, K.: Dilatometry studies on water atomised stainless steel 316L powders. In: Powder Metallurgy World Congress (PM’94), pp. 1065–1068 (1994)

  37. German R., Rabin B.: Enhanced sintering through second phase additions. Powder metallurgy 28, 7–12 (1985)

    Article  Google Scholar 

  38. Gülsoy H.: Production of injection moulded 316L stainless steels reinforced with TiC (N) particles. Materials Science and Technology 24, 1484–1491 (2008)

    Article  Google Scholar 

  39. German, R.M.: Sintering Theory and Practice. Sintering Theory and Practice, vol. 1, pp. 568. Wiley, New York (1996); ISBN 0-471-05786-X

  40. Divinski S., Hisker F., Kang Y.-S., Lee J.-S., Herzig C.: 59Fe Grain Boundary Diffusion in Nanostructured \({\gamma}\)-Fe–Ni: Part I: Radiotracer Experiments and Monte-Carlo Simulation in the Type-A and B Kinetic Regimes. Zeitschrift für Metallkunde 93, 256–264 (2002)

    Article  Google Scholar 

  41. Lin, S.J.; Feng, D.P.; Shi, Q.N.: Microstructure and mechanical properties of vacuum sintered austenitic stainless steel parts. Adv. Mater. Res. 160, 915–920 (2011)

  42. Marucci M., Lawley A., Causton R., Saritas S.: Effect of Small Additions of Boron on the Mechanical Properties and Hardenability of Sintered P/M Steels. In: Arnhold, V., Chu, C.-L., Jandeska, W.F., Sanderow, H.I. (eds) Advances in Powder Metallurgy and Particulate Materials,compiled, pp. 53–63. MPIF, Princeton (2002)

    Google Scholar 

  43. Tang X.: Sigma phase characterization in AISI 316 stainless steel. Microscopy and Microanalysis 11, 78–79 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faiz Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M., Ahmad, F., Yusoff, P.S.M.B.M. et al. Investigation of Boron Addition on Densification and Cytotoxicity of Powder Injection Molded 316L Stainless Steel Dental Materials. Arab J Sci Eng 41, 4669–4681 (2016). https://doi.org/10.1007/s13369-016-2224-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2224-1

Keywords

Navigation