Skip to main content
Log in

Impact of Silver Nanoparticles on Bacteria Isolated from Raw and Treated Wastewater in Madinah, KSA

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This manuscript investigates the effect of silver nanoparticles of different doses and shapes on different gram reaction stain bacteria found in wastewater and to make a comparison between the chemical and physical analyses for some water samples before and after treatment with AgNPs. Two shapes (rod, cube) and four concentrations of 0, 100, 10 and \({1\,\mu{g/ml}}\) of AgNPs were used on Klebsiella pneumonia, Bacillus cereus and Gardnerella vaginalis. The effect of the interaction between the best AgNPs shape and concentration on tap water inoculated with bacterial species and physical and chemical analyses of water before and after treatment with silver nanoparticles were also investigated. Based on the analysis of variance for growth reduction data for the three bacteria, the models showed significance at \({\alpha = 0.05}\). Generally, rod shape with concentration of \({100\, \mu{g/ml}}\) showed the best reduction results compared to cube-shaped particles with mean values of \({-67.48, -100}\) and −73.354 for G. vaginalis, B. cereus and K. pneumonia, respectively. Treating tap water inoculated with the bacterial species by silver nanoparticles showed no growth for the bacteria after 1 or 3 days. In general, tap water chemical and physical analyses values before and after treating with AgNPs were increased after treating the sample with AgNPs except for the pH where it shifted from 8.3 to 6.65. However, these values are still within the Saudi maximum limit except the values of turbidity. These results are encouraging for scaling up a treatment process using AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Qodah Z., Al-Bsoul A., Assirey E., Al-Shannag M.: Combined ultrasonic irradiation and aerobic biodegradation treatment for olive mills wastewaters. Environ. Eng. Manag. J. 13(8), 2109–2118 (2014)

    Google Scholar 

  2. Al-Shannag M., Al-Qodah Z., Alananbeh K., Bouqellah N., Assirey E.: COD reduction of baker’s yeast wastewater using batch electrocoagulation. Environ. Eng. Manag. J. 13, 3153–3160 (2014)

    Google Scholar 

  3. City of Guleph. Introduction to Wastewater Treatment, vol. 2, pp. 1–17. http://guelph.ca/wp-content/uploads/IntroductionToWastewater.pdf

  4. Choudhary, A.; Ojha, D.: Process and function of advance wastewater treatment technology for textile based effluent. Int. J. Geol. Earth Environ. Sci. 2, 2277–2081 (2012)

  5. United Nations (UN): Wastewater Treatment Technologies—A General Review, vol. 2, pp. 3–119. New York (2003)

  6. Cloette T.E., Silva E., Nel L.H.: Removal of waterborne human enteric viruses and coliphages with oxidized coal. Curr. Microbiol. 37, 23–27 (1998)

    Article  Google Scholar 

  7. Kumar V.S., Nagaraja B.M., Shashikala V., Padmasri A.H., Madhavendra S.S., Raju D.B., Rao R.K.S.: Highly efficient Ag/C catalyst prepared by electro-chemical deposition method in controlling microorganisms in water. J. Mol. Catal. 223, 313–319 (2004)

    Article  Google Scholar 

  8. Blake D.M.: Bibliography of work on the photocatalytic removal of hazardous compounds from water and air. Nat. Renew. Energy Lab. 16, 430–22197 (1997)

    Google Scholar 

  9. Arnaout, C.L.: Assessing the impacts of silver nanoparticles on the growth, diversity, and function of wastewater bacteria. Ph.D. thesis, Duke University (2012)

  10. Ollis D.F., El-Akabi H.: Photocatalytic purification and treatment of water and air. Elsevier Soc 44, 957–961 (1993)

    Google Scholar 

  11. Gong, P. Li, H.; He, X.; Wang, K.; Hu, J.; Tan, W.: Preparation and antibacterial activity of Fe3O4 Ag nanoparticles. Nanotechnology 18, 604–611 (2007)

  12. Neuberger T.B., Schopf H., Hofmann M., Von Rechenberg B.: Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J. Magn. Magn. Mater. 293, 483–496 (2005)

    Article  Google Scholar 

  13. Norman, T.J.: Nanoparticles Assemblies and Superstructures. Edited by: Kotov Nicholas Amazon. CRC Press (2006)

  14. Parak W.J., Gerion D., Pellegrino T., Zanchet D., Zanchet D., Micheel C., Boudreau R., LeGros M.A., Alarabell C., Alivisatos A.P.: Biological applications of colloidal nano crystals. Nanotechnology 14, 15–27 (2003)

    Article  Google Scholar 

  15. Singh M., Singh S., Prasad S., Gambhir I.S.: Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Dig. J. Nanomater. Biostruct. 3, 115–122 (2008)

    Google Scholar 

  16. Knoll A.: Integrating nanotechnology into a working storage device. Microelectron. Eng. 83, 1692–1697 (2006)

    Article  Google Scholar 

  17. Wong Y.W.H., Yuen C.W.M., Leung M.Y.S., Ku S.K.A., Lam H.L.I.: Selected applications of nanotechnology in textiles. AUTEX Res. J. 6, 34–40 (2006)

    Google Scholar 

  18. Zhuang J.; Gentry R.W.: Environmental application and risks of nanotechnology: a balanced view biotechnology and nanotechnology risk assessment: minding and managing the potential threats around us. In: ACS Symposium Series Chapter, vol. 3, pp. 41–67 (2011)

  19. Stensberg, M.C.; Madangopal, R.; Yale, G.; Wei, Q.; Ochoa-Acuña, H.; Wei, A.; Mclamore, E.S.; Rickus, J.; Porterfield, D.M.; Sepúlveda, M.S.: Silver nanoparticle-specific mitotoxicity in Daphnia magna. Nanotoxicology 8(8), 833 (2014)

  20. Tyagi K.P., Singh R., Vats S., Kumar D., Tyagi S.: Nanomaterials use in wastewater treatment. Int. Conf. Nanotechnol. Chem. Eng. 2, 65–69 (2012)

    Google Scholar 

  21. Nowack B.: Pollution prevention treatment using nanotechnology. Environ. Asp. 2, 15 (2008)

    Google Scholar 

  22. Tiwari D.K., Behari J., Sen P.: Application of nanoparticles in wastewater treatment. World Appl. Sci. J. 3, 417–433 (2008)

    Google Scholar 

  23. Luoma S.N.: Silver nanotechnologies and the environment: old problems or new challenges. J. Appl. Sci. 10, 1723–1731 (2008)

    Google Scholar 

  24. Cho K.H., Park J.E., Osaka T., Park S.G.: The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochem. Acta 51, 956–960 (2005)

    Article  Google Scholar 

  25. Percival S.L., Bowler P.G., Russell D.: Bacterial resistance to silver in wound care. J. Hosp. Inf. 60, 1–7 (2005)

    Article  Google Scholar 

  26. Hidalgo E., Dominguez C.: Study of cytotoxicity mechanisms of silver nitrate in human dermal fibroblasts. Toxicol. Lett. 98, 169–179 (1998)

    Article  Google Scholar 

  27. Mosleh Y.I., Almagrabi O.A.: Heavy metal accumulation in some vegetables irrigatedwith treated wastewater. Int. J. Green Herb. Chem. 2, 81–90 (2013)

    Google Scholar 

  28. Chary N.S., Kamala C.T., Raj D.S.: Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer. Ecotoxicol. Environ. Saf. 69, 513–524 (2008)

    Article  Google Scholar 

  29. Abu-Rizaiza O.S.: Modification of the standards of wastewater reuse in Saudi Arabia. Water Res. 2, 2601–2608 (1999)

    Article  Google Scholar 

  30. Solomon S.D., Bahadory M., Jeyarajasingam A.V., Rutkowsky S.A., Boritz C.: Synthesis and study of silver nanoparticles. J. Chem. Educ. 84(2), 322–325 (2007)

    Article  Google Scholar 

  31. Butkus, M.A.; Labare, M.P.; Starke, J.A.; Moon, K.; Talbot, M.: Use of aqueous silver to enhance inactivation of coliphage MS-2 by UV disinfection. Appl. Environ. Microbiol. 70(5), 2848–53 (2004)

  32. Kim J.S., Kuk E., Yu K.N., Kim J.H., Park S.J., Lee H.J., Kim S.H.: Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 3, 95–101 (2007)

    Article  Google Scholar 

  33. Amaya R.A., Al-Dossary F., Demmler G.J.: Gardnerella Vaginalis bacteremia in a premature neonate. J. Perinatol. 22, 585–587 (2002)

    Article  Google Scholar 

  34. Ahmadi, F.; Abolghasemi, S.; Parhizgari, N.; Moradpour, F.: Effect of silver nanoparticles on common bacteria in hospital surfaces. Jundishapur J. Mycobiol. 6, 209–14 (2013)

  35. Soo-Hwan K., Lee H., Ryu D., Choi S., Lee D.: Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39, 77–85 (2011)

    Google Scholar 

  36. Pal S., Tak Y.K., Song J.M.: Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticles? A study of the gram-negative bacterium Escherichia coli. Am. Soc. Microbiol. 73, 10–109 (2007)

    Google Scholar 

  37. Panacek A., Kolar M., Vecerova R., Prucek R., Soukupova J., Rystof V., Hamal P., Zboril R., Kvitek L.: Antifungal activity of silver nanoparticles against Candida J. Biomater. 30, 6333–6340 (2009)

    Article  Google Scholar 

  38. Choi O., Deng K.K., Kim N.J., Ross L., Surampalli R.Y., Hu Z.Q.: The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42(12), 3066–3074 (2008)

    Article  Google Scholar 

  39. Arnaout C.L., Gunsch C.K.: Impacts of silver nanoparticle coating on thenitrification potential of Nitrosomonas europaea. Environ. Sci. Technol. 46(10), 5387–5395 (2012)

    Article  Google Scholar 

  40. Amro, N.A.; Kotra, L.P.; Wadu-Mesthrige, K.; Bulychev, A.; Mobashery, S.; Liu, G.: High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16, 2789–96 (2000)

  41. Das, P.; Xenopoulos, M.A.; Williams, C.J.; Hoque, M.E., Metcalfe, C.D.: Effects of silver nanoparticles on bacterial activity in natural waters. Environ. Toxicol. Chem. 31, 122–130 (2012). doi:10.1021/la035330m

  42. Zhang L., Yu J.C., Yip H.Y., Li Q., Kwong K.W., Xu A., Wong P.K.: Ambient light reduction strategy to synthesize silver nanoparticles and silver-coated TiO2 with enhanced photocatalytic and bactericidal activities. Langmuir 19, 10372–10380 (2003)

    Article  Google Scholar 

  43. Perez, M.A.: The Effects of Silver Nanoparticles on Wastewater Treatment and Escherichia coli Growth. Honors Thesis, Florida State University, Florida, USA (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria Al-Qudah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alananbeh, K.M., Al-Qudah, Z., El-Adly, A. et al. Impact of Silver Nanoparticles on Bacteria Isolated from Raw and Treated Wastewater in Madinah, KSA. Arab J Sci Eng 42, 85–93 (2017). https://doi.org/10.1007/s13369-016-2133-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-016-2133-3

Keywords

Navigation