Skip to main content
Log in

Cloning and In Silico Analysis of a High-Temperature Inducible Lipase from Brevibacillus

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The genus Brevibacillus comprises diverse collection of gram-positive/gram-variable, endospore-forming, rod-shaped, aerobic/facultative anaerobic bacteria inhabitant of varied environmental habitats contributing many industrial enzymes. A thermophilic lipolytic bacterium was previously isolated from a hot spring of Orissa, India, and identified as Brevibacillus sp. AK-P2 via 16S rRNA gene technology. A 750-bp lipase gene from Brevibacillus sp. AK-P2 was isolated and sequenced, which encoded a deduced polypeptide of 250 amino acid residues. The comparative analysis of amino acid composition among thermostable and mesostable homologue of Brevibacillus lipases ascertains the role of neutral, charged, and aromatic amino acid residues in thermostability. Three amino acid residues Ser 94, His 242, and Asp 213 were identified from this putative lipase of Brevibacillus sp. AK-P2 as catalytic triad. The consensus ‘P-loop’ motif (-[AG]-X4-G-K-[ST]-) previously reported for Bacillus thermoalkalophilic lipases is modified to (-[AT]-[GE]-X5-G-[RQ]-[S]-) inBrevibacillus lipases. Multiple sequence alignment (MSA) revealed that there is a methionine residue (M) in the oxyanion hole consensus sequence of thermostable Brevibacillus lipases. The frequency of occurrence of AXXXA motif is more for thermophilic Brevibacillus lipases than their mesophilic counterparts ensures strong van der Waals interaction and stabilization of proteins. Higher percentage of Alanine (A) in thermophilic Brevibacillus lipases attributed toward thermostabilization of lipases. Codon usage analysis revealed that there was intermediate codon usage bias in lipase-coding genes, and the same supports our hypothesis that GC mutation pressure might determine codon usage bias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jaeger K.E., Ransac S., Dijkstra B.W., Colson C., van Heuvel M., Misset O.: Bacterial lipases. FEMS Microbiol. Rev. 15, 29–63 (1994)

    Article  Google Scholar 

  2. Chakravorty D., Parameswaran S., Dubey V.K., Patra S.: In silico characterization of thermostable lipases. Extremophiles 15(1), 89–103 (2011)

    Article  Google Scholar 

  3. Pleiss J., Fischer M., Peiker M., Thiele C., Schmid R.D.: Lipase engineering database—understanding and exploiting sequence–structure–function relationships. J. Mol. Catal. B Enzym. 10, 491–508 (2000)

    Article  Google Scholar 

  4. Royter M., Schmidt M., Elend C., Hobenreich H., Schafer T., Bornscheuer U.T., Antranikian G.: Thermostable lipases from the extreme thermophilic anaerobic bacteria Thermoanaerobacter thermohydrosulfuricus SOL1 and Caldanaerobacter subterraneus subsp. tengcongensis. Extremophiles 13(5), 769–783 (2009)

    Article  Google Scholar 

  5. Kanmani P., Aravind J., Kumaresan K.: An insight into microbial lipases and their environmental facet. Int. J. Environ. Sci. Technol. 12(3), 1147–1162 (2015)

    Article  Google Scholar 

  6. Laachari F., Bergadi F., Sayari A., Elabed S., Mohammed I., Harchali E.H., Ibnsouda S.K.: Biochemical characterization of a new thermostable lipase from Bacillus pumilus strain [Bacillus pumilus suşundan elde edilen yeni termostabil lipazın biyokimyasal karakterizasyonu]. Turk. J. Biochem. 40(1), 8–14 (2015)

    Article  Google Scholar 

  7. Yuan, D.; Lan, D.; Xin, R.; Yang, B.; Wang, Y.: Screening and characterization of a thermostable lipase from marine Streptomyces sp. strain W007. Biotechnol. Appl. Biochem. (2015). doi:10.1002/bab.1338

  8. Bisht, S.S.; Panda, A.K.: Biochemical characterization and 16S rRNA sequencing of few lipase producing thermophilic bacteria from Taptapani hot water spring, Orissa, India. Biotechnol. Res. Int. (2011). doi:10.4061/2011/452710

  9. Lopez-Lopez, O.; Cerdan, M.E.; Siso, M.I.G.: New extremophilic lipases and esterases from metagenomics. Curr. Protein Pept. Sci. 15(5), 445–455 (2014). doi:10.2174/1389203715666140228153801

  10. Sigurgisladottirr S., Konraosdottir M., Jonsson A., Kristjansson J.K., Matthiasson E.: Lipase activity of thermophilic bacteria from Icelandic hot springs. Biotechnol. Lett. 15(4), 361–366 (1993)

    Article  Google Scholar 

  11. Pinsirodom P., Parkin K.L.: Current Protocols in Food Analytical Chemistry. Wiley, USA (2001)

    Google Scholar 

  12. Wilson, K.: Preparation of Genomic DNA from Bacteria. Current Protocols in Molecular Biology.: 00I: 2.4:2.4.1–2.4.5.Wiley, New York (2001)

  13. Sambrook J., Fritsch E.E., Maniatis T.A.: Molecular cloning: A Laboratory Manual. Cold Spring Harbor Lab. Press, Cold Spring Harbor (1989)

    Google Scholar 

  14. Sanger F., Nicklen S., Coulson A.R.: DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. 74(12), 5463–5467 (1977)

    Article  Google Scholar 

  15. Saitou N., Nei M.: The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4(1), 406–425 (1987)

    Google Scholar 

  16. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(1), 2731–2739 (2011)

    Article  Google Scholar 

  17. Felsenstein J.: Confidence limits on phylogenies: an approach using the boot strap. Evolution 39(4), 783–791 (1985)

    Article  Google Scholar 

  18. Zuckerkandl, E., Pauling, L.:Evolutionary divergence and convergence in proteins. In: Bryson ,V., Vogel, H.J. (eds.) Evolving Genes and Proteins, pp. 97–166. Academic Press, NY (1965)

  19. Gasteiger, E.; Hoogland, C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R., Appel M.R.; Appel, R.D.; Bairoch, A.: The Proteomics Protocols Handbook. pp. 571–607. Humana Press, Clifton (2005)

  20. Bjellqvist B., Hughes G.J., Pasquali C., Paquet N., Ravier F., Sanchez J.C., Frutiger S., Hochstrasser D.: The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis 14(1), 1023–1031 (1993)

    Article  Google Scholar 

  21. Kyte J., Doolittle R.F.: A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1), 105–132 (1982)

    Article  Google Scholar 

  22. Guruprasad K., Reddy B.V., Pandit M.W.: Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 4(1), 155–161 (1990)

    Article  Google Scholar 

  23. Hawwa R., Aikens J., Turner R.J., Santarsiero B.D., Mesecar A.D.: Structural basis for thermostability revealed through the identification and characterization of a highly thermostable phosphotriesterase-like lactonase from Geobacillus stearothermophilus. Arch. Biochem. Biophys. 488, 109–120 (2009)

    Article  Google Scholar 

  24. Tina, K.G.; Bhadra, R.; Srinivasan, N.: PIC: protein interactions calculator. Nucleic Acids Res. 35(suppl 2), W473–W476 (2007). doi:10.1093/nar/gkm423

  25. Morton B.R.: Chloroplast DNA codon use: evidence for selection at the psb A locus based on tRNA availability. J. Mol. Evol. 37(3), 273–280 (1993)

    Article  MathSciNet  Google Scholar 

  26. Wright F.: The ‘effective number of codons’ used in a gene. Gene 87(1), 23–29 (1990)

    Article  Google Scholar 

  27. Librado P., Rozas J.: DnaSP v5: software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11), 1451–1452 (2009)

    Article  Google Scholar 

  28. Velez A.M., Horta A.C., Silva A.J., Costa I.M.R., Raquel de Lima C.G., Zangirolami T.C.: Enhanced production of recombinant thermostable lipase in Escherchia coli at high induction temperature. Protein Expr. Purif. 90(1), 96–103 (2013)

    Article  Google Scholar 

  29. Valdez-Cruz N.A., Caspeta L., Perez N.O., Ramirez O.T., Trujillo-Roldan M.A.: Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Microb. Cell Fact. 9, 18 (2010)

    Article  Google Scholar 

  30. Philip J., Bell L., Sunna A., Gibbs M.D., Curach N.C., Nevalainen H., Bergquist P.L.: Prospecting for novel lipase genes using PCR. Microbiology 148(8), 2283–2291 (2002)

    Article  Google Scholar 

  31. Cho A.R., Yoo S.K., Kim E.J.: Cloning, sequencing and expression in Escherichia coli of a thermophilic lipase from Bacillus thermoleovorans ID-1. FEMS Microbiol. Lett. 186(2), 235–238 (2000)

    Article  Google Scholar 

  32. Rahman R.N.Z.R.A., Leow T.C., Basri M., Salleh A.B.: Secretory expression of thermostable T1 lipase through bacteriocin release protein. Protein Expr. Purif. 40(2), 411–416 (2005)

    Article  Google Scholar 

  33. Saeed H.M., Zaghloul I.A., Khalil I.A., Abdelbaeth T.M.: Molecular cloning and expression in Escherichia coli of Pseudomonas aeruginosa lipase gene. Biotechnology 5, 62–68 (2006)

    Article  Google Scholar 

  34. Arpigny J.L., Jaeger K.E.: Bacterial lipolytic enzymes: classification and properties. Biochem. J. 343(1), 177–183 (1999)

    Article  Google Scholar 

  35. Pleiss J., Fischer M., Schmid R.D.: Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem. Phys. Lipids 93, 67–80 (1998)

    Article  Google Scholar 

  36. Kleiger G., Grothe R., Mallick P., Eisenberg D.: GXXXG and AXXXA: common a-helical interaction motifs in proteins, particularly in extremophiles. Biochem. J. 41(1), 5990–5997 (2002)

    Article  Google Scholar 

  37. Leonov H., Arkin I.T.: A periodicity analysis of transmembrane helices. Bioinformatics 21(1), 2604–2610 (2005)

    Article  Google Scholar 

  38. Shalongo W., Dugad L., Stellwagen E.: Analysis of the thermal transitions of a model helical peptide using 13C NMR. J. Am. Chem. Soc. 116(1), 2500–2507 (1994)

    Article  Google Scholar 

  39. Kumwenda B., Litthauer D., Bishop O.T., Reva O.: Protein thermostability enhancing factors in industrially important Thermus bacteria species. Evol. Bioinform. 9, 327–342 (2013)

    Article  Google Scholar 

  40. Fukuchi S., Nishikawa K.: Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria. J. Mol. Biol. 309, 835–843 (2001)

    Article  Google Scholar 

  41. Silver A.M., Livesay D.R.: Optimized electrostatic surfaces parallel increased thermostability: a structural bioinformatic analysis. Protein Eng. 16(1), 871–874 (2003)

    Google Scholar 

  42. Feller G., Arpigny L., Narinx E., Gerday Ch.: Molecular adaptation of enzymes from psychrophilic organisms. Comp. Biochem. Physiol. 118(3), 495–499 (1997)

    Article  Google Scholar 

  43. Siddiqui K.S., Cavicchioli R.: Cold-adapted enzymes. Annu. Rev. Biochem. 75, 403–433 (2006)

    Article  Google Scholar 

  44. Vieille C., Zeikus G.J.: Hyperthermophilic enzymes: sources, uses and molecular mechanism for thermostability. Microbiol. Mol. Biol. 65(1), 1–43 (2001)

    Article  Google Scholar 

  45. Argos P., Rossmann M.G., Grau U.M., Zuber H., Frank G., Tratschin J.D.: Thermal stability and protein structure. Biochem. J. 18(1), 5698–5703 (1979)

    Article  Google Scholar 

  46. Shalongo W., Dugad L., Stellwagen E.: Analysis of thermal transitions of a model helical peptide using 13C NMR. J. Am. Chem. Soc. 116(1), 2500–2507 (1994)

    Article  Google Scholar 

  47. Gromiha M.M., Oobatake M., Sarai A.: Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys. Chem. 82, 51–67 (1999)

    Article  Google Scholar 

  48. Roy, D.; Sengupta, S.: Structural features of a cold-adapted alaskan bacterial lipase. J. Biomol. Struct. Dyn. 24(5), 463–470 (2007). doi:10.1080/07391102.2007.10507134

  49. Aghajari N., Feller G., Gerday C., Haser R.: Structures of the psychrophilic Altermonas haloplanctis α-amylase give insights into cold adaptation at a molecular level. Structure 6, 1503–1516 (1998)

    Article  Google Scholar 

  50. Trivedi S., Gehlot H.S., Rao S.R.: Protein thermostability in Archaea and Eubacteria. Genet. Mol. Res. 5(4), 816–827 (2006)

    Google Scholar 

  51. Lobry J.R., Chessel D.: Internal correspondence analysis of codon and amino-acid usage in thermophilic bacteria. J. Appl. Genet. 44(2), 235–261 (2003)

    Google Scholar 

  52. Prabha R., Singh D.P., Gupta S.K., de Farias S.T., Rai A.: Comparative analysis to identify determinants of changing life style in Thermosynechococcus elongatus BP-1, a thermophilic cyanobacterium. Bioinformation 9(6), 299–308 (2013)

    Article  Google Scholar 

  53. Farias S.T., Bonato M.C.: Preferred amino acids and thermostability. Genet. Mol. Res. 2(4), 383–393 (2003)

    Google Scholar 

  54. Hurst L.: The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 18(9), 486–489 (2002)

    Article  Google Scholar 

  55. Xu C., Dong J., Zhuge Q.: Analysis of synonymous codon usage patterns in seven different Citrus Species. Evol. Bioinform. 9, 215–228 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Panda.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (JPG 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A.K., Bisht, S.P.S., Panigrahi, A.K. et al. Cloning and In Silico Analysis of a High-Temperature Inducible Lipase from Brevibacillus . Arab J Sci Eng 41, 2159–2170 (2016). https://doi.org/10.1007/s13369-015-1975-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1975-4

Keywords

Navigation