Skip to main content
Log in

Impact Toughness and Deformation Parameters of Fracture of Railway Axle Material

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the current paper, the main regularities in fracture of the railway axle steel have been found. It is established that the energy intensity of the steel fracture is connected with the deformational manifestations at the meso and macrolevels. As a part of the methodology of mesomechanics, the deformation behavior of the locomotive axis material has been described, taking into account the interaction between the processes that take place at different scale levels under the impact loading of Charpy specimens. A special role is given to the investigation of the local response of the material at the mesolevel, where the stress–strain state is characterized by a significant nonuniformity, and leads to the formation of shear lips. The shear lip parameters are found to be linearly and depend on the energy intensity of the impact deformation and fracture of the material. The additional evaluation parameters of the energy intensity of deformation and fracture of Charpy specimens can be tore out on the surface and micromechanisms of fracture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zerbst U., Mädler K., Hintze H.: Fracture mechanics in railway applications—an overview. Eng. Fract. Mech. 72(2), 163–194 (2005)

    Article  Google Scholar 

  2. Beretta S., Carboni M., Conte A.L., Regazzi D., Trasatti S., Rizzi M.: Crack growth studies in railway axles under corrosion fatigue: Full-scale experiments and model validation. Proc. Eng. 10, 3650–3655 (2011)

    Article  Google Scholar 

  3. Moon A.P., Sangal S., Srivastav S., Gajbhiye N.S., Mondal K.: Passivation and corrosion behavior of modified ferritic-pearlitic railway axle steels. J. Mater. Eng. Perform. 24(1), 85–97 (2015)

    Article  Google Scholar 

  4. Hirakawa K., Toyama K., Kubota M.: The analysis and prevention of failure in railway axles. Int. J. Fatigue 20, 135–144 (1998)

    Article  Google Scholar 

  5. Yasniy O., Vuherer T., Pyndus Y., Sorochak A., Samardžić I.: In-service damage of railway steel axles. Tech. Gazette 18(1), 87–90 (2011)

    Google Scholar 

  6. Maruschak P.O., Bishchak R.T., Vuherer T.: Laws governing the dynamic fracture of two-layer bimetallic composites. Metallurgist 55(5–6), 444–449 (2011)

    Article  Google Scholar 

  7. Maruschak P.O., Danyliuk I.M., Bishchak R.T., Vuherer T.: Low temperature impact toughness of the main gas pipeline steel after long-term degradation. Cent. Eur. J. Eng. 4(4), 408–415 (2014)

    Google Scholar 

  8. Yasniy, P.; Maruschak, P.; Gotovych, Yu.; Baran, D.: High temperature impact toughness of steel for continuous casting machine rolls. In: Proceedings of 16th International Conference “Mechanika”, (7–8 of April), Kaunas, Lithuania, pp. 123–127 (2011)

  9. Yamamoto I., Mukaiyama T., Yamashita K., Sund Z.M.: Effect of loading rate on absorbed energy and fracture surface deformation in a 6061-T651 aluminum alloy. Eng. Fract. Mech. 71, 1255–1271 (2004)

    Article  Google Scholar 

  10. ISO 148-2: Metallic Materials—Charpy Pendulum Impact Test—Part 2: Verification of Testing Machines. International Organization for Standardization, Geneva (CH) (2008)

  11. ISO 148-1: Metallic Materials—Charpy Pendulum Impact Test—Part 1: Test Method. International Organization for Standardization, Geneva (CH) (2009)

  12. ASTM E23-07ae1: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM International, West Conshohocken, PA (USA) (2007)

  13. GOST 31334-2007: Axles for Rolling Stock of 1520 mm Gauge Railways. Specifications, Interstate Council For Standardization, Metrology and Certification (ISC)

  14. Levchenko G.V., Dyomina E.G., Nefedyeva E.E., Buga I.D., Antonov Yu.G., Medinskiy G.A.: Effect of billet strained condition on microstructure homogeneity of railway axles. Metall. Min. Ind. 2(3), 207–214 (2010)

    Google Scholar 

  15. Makarov P.V.: Localized deformation and fracture of polycrystals at mesolevel. Theor. Appl. Fract. Mech. 33(1), 23–30 (2000)

    Article  Google Scholar 

  16. Balokhonov R., Romanova V., Schmauder S.: Numerical simulation of intermittent yielding at the macro and mesolevels. Comput. Mater. Sci. 32(3-4), 261–267 (2005)

    Article  Google Scholar 

  17. Romanova V., Balokhonov R., Makarov P., Schmauder S., Soppa E.: Simulation of elasto-plastic behaviour of an artificial 3D-structure under dynamic loading. Comput. Mater. Sci. 28(3–4 Spec. iss.), 518–528 (2003)

    Article  Google Scholar 

  18. Panin V.E., Pleshanov V.S., Kobzeva S.A., Burkova S.P.: Relaxation mechanism of rotational type in fracture of weld joints for austenic steels. Theor. Appl. Fract. Mech. 29(2), 99–102 (1998)

    Article  Google Scholar 

  19. Panin V.E.: Plastic deformation and fracture of solids at the mesoscale level. Mater. Sci. Eng. A 234–236, 944–948 (1997)

    Article  Google Scholar 

  20. Panin V.E.: Strain-induced defects in solids at the different scale levels of plastic deformation and the nature of their sources. Mater. Sci. Eng. A 319–321, 197–200 (2001)

    Article  Google Scholar 

  21. Maruschak P., Baran D., Gliha V.: A multiscale approach to deformation and fracture of heat-resistant steel under static and cyclic loading. Medžiagotyra 19, 29–33 (2013)

    Google Scholar 

  22. Kondryakov E.A., Panasenko A.V., Kharchenko V.V.: Experimental determination of the moment of fracture initiation in standard Charpy specimens and Specimens with edge notches. Strength Mater. 47, 291–296 (2015)

    Article  Google Scholar 

  23. Kharchenko V.V., Kondryakov E.A., Zhmaka V.N., Babutskii A.A., Babutskii A.I.: The effect of temperature and loading rate on the crack initiation and propagation energy in carbon steel Charpy specimens. Strength Mater. 38, 535–541 (2006)

    Article  Google Scholar 

  24. Joo M.S., Suh D.W., Bae J.H, Bhadeshia H.K.D.H.: Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel. Mater. Sci. Eng. A 546, 314–322 (2012)

    Article  Google Scholar 

  25. Verdeja J.I., Asensio J., Pero-Sanz J.A.: Texture formability lamellar tearing and HIC susceptibility of ferritic and low carbon steels. Mater. Charact. 50, 81–86 (2003)

    Article  Google Scholar 

  26. Hutsaylyuk V., Chausov M., Berezin V., Pylypenko A.: Strength analysis of mechanical systems at dynamic non-equilibrium processes. Eng. Fail. Anal. 35, 636–644 (2013)

    Article  Google Scholar 

  27. Zasimchuk E., Markashova L., Baskova O., Turchak T., Chausov N., Hutsaylyuk V., Berezin V.: Influence of combined loading on microstructure and properties of aluminum alloy 2024-T3. J. Mater. Eng. Perform. 22, 3421–3429 (2013)

    Article  Google Scholar 

  28. Balokhonov R.R., Stefanov Yu.P., Makarov P.V., Smolin I.Yu.: Deformation and fracture of surface-hardened materials at meso- and macroscale levels. Theor. Appl. Fract. Mech. 33(1), 9–15 (2000)

    Article  Google Scholar 

  29. Cerny I., Linhart V.: Effects of different microstructure on resistance of EA4T railway axle steel of equal strength to fatigue crack growth. Key Eng. Mater. 592-593, 631–634 (2014)

    Article  Google Scholar 

  30. Berecz T., Balogh L., Meszaros I., Steinbach A.: The radial hardness-profile and the microstructure of railroad car axle materials treated by surface rolling, determined by novel examination methods. Mater. Sci. Eng. A 592, 95–101 (2014)

    Article  Google Scholar 

  31. Alihosseini H., Dehghani K.: Modeling and failure analysis of a broken railway axle: effects of surface defects and inclusions. J. Fail. Anal. Prev. 10(3), 233–239 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. T. Bishchak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maruschak, P.O., Sorochak, A.P., Vuherer, T. et al. Impact Toughness and Deformation Parameters of Fracture of Railway Axle Material. Arab J Sci Eng 41, 1647–1655 (2016). https://doi.org/10.1007/s13369-015-1896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1896-2

Keywords

Navigation