Skip to main content
Log in

Synthesis and Use of Low-Band-Gap ZnO Nanoparticles for Water Treatment

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Zinc oxide has been prepared with crystallite size in nanodimension by the use of wet chemical technique. The crystalline nature of nano-ZnO with average crystallite size of 36–63 nm was confirmed by X-ray diffraction. The synthesized nano-ZnO was further characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy and energy-dispersive X-ray spectroscopy. The prominent spherical surface morphology of synthesized nano-ZnO was confirmed by scanning electron microscopy. The optical band gap of 3.12 eV was obtained for nano-ZnO. The prepared nano-ZnO were utilized for the treatment of dye as well as bacterial cultures found in aqueous phase. Excellent remediation by nano-ZnO was observed against the fast green dye and bacteria Bacillus subtilis and E. coli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kant S., Kumar S.: Effects of alkaline earth metal ions on thermodynamic and ultrasonic properties of ascorbic acid. J. Chem. Eng. Data 58, 1294–1300 (2013)

    Article  Google Scholar 

  2. Kant S., Kumar A., Kumar S.: Molar volume, viscosity and conductance studies of some alkali metal chlorides in aqueous ascorbic acid. J. Mol. Liq. 150, 39–43 (2009)

    Article  Google Scholar 

  3. Hadi P., To M.H., Hui C.W., Lin C.S.K., McKay G.: Aqueous mercury adsorption by activated carbons. Water Res. 73, 37–55 (2015)

    Article  Google Scholar 

  4. Jayanthy V., Geetha R., Rajendran R., Prabhavathi P., Sundaram S.K., Kumar S.D., Santhanam P.: Phytoremediation of dye contaminated soil by Leucaena leucocephala (subabul) seed and growth assessment of Vigna radiata in the remediated soil. Saudi J. Biol. Sci. 21, 324–333 (2014)

    Article  Google Scholar 

  5. Perumalsamy H., Jung M.Y., Hong S.M., Ahn Y.J.: Growth-inhibiting and morphostructural effects of constituents identified in Asarum heterotropoides root on human intestinal bacteria. BMC Complement. Altern. Med. 13, 245 (2013)

  6. Wan N.W.S., Hanafiah M.A.K.M.: Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Bioresour. Technol. 99, 3935–3948 (2008)

    Article  Google Scholar 

  7. Bhatnagar A., Jain A.K.: A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. J. Colloid Interface Sci. 281, 49–55 (2005)

    Article  Google Scholar 

  8. Ahmaruzzaman M.D.: Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid Interface Sci. 143, 48–67 (2008)

    Article  Google Scholar 

  9. Zhang L., Fang M.: Nanomaterials in pollution trace detection and environmental improvement. Nano Today 5, 128–142 (2010)

    Article  Google Scholar 

  10. Kiser M.A., Westerhoff P., Benn T., Wang Y., Erez-Rivera J.P., Hristovski K.: Titanium nanomaterial removal and release from wastewater treatment plants. Environ. Sci. Technol. 43, 6757–6763 (2009)

    Article  Google Scholar 

  11. Wang S., Sun H., Ang H.M., Tadé M.O.: Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 226, 336–347 (2013)

    Article  Google Scholar 

  12. Savage N., Diallo M.S.: Nanomaterials and water purification: opportunities and challenges. J. Nanoparticle Res. 7, 331–342 (2005)

    Article  Google Scholar 

  13. Bhati I., Punjabi P.B., Ameta S.C.: Photocatalytic degradation of fast green using nanosized CeCrO3. Maced. J. Chem. Chem. Eng. 29, 195–202 (2010)

    Google Scholar 

  14. Mittal A., Kaur D., Mittal J.: Batch and bulk removal of a triarylmethane dye, fast green FCF, from wastewater by adsorption over waste materials. J. Hazard. Mater. 163, 568–577 (2009)

    Article  Google Scholar 

  15. Tahir H., Hammed U., Zahanzeb Q., Sultan M.: Removal of fast green dye (C.I. 42053) from an aqueous solution using Azadirachta indica leaf powder as a low-cost adsorbent. Afr. J. Biotechnol. 7, 3906–3911 (2008)

    Google Scholar 

  16. Sires I., Guivarch E., Oturan N., Oturan M.A.: Efficient removal of triphenylmethane dyes from aqueous medium by in situ electrogenerated Fenton’s reagent at carbon-felt cathode. Chemosphere 72, 592–600 (2008)

    Article  Google Scholar 

  17. Saquib M., Abu Tariq M., Faisal M., Muneer M.: Photocatalytic degradation of two selected dye derivatives in aqueous suspensions of titanium dioxide. Desalination 219, 301–311 (2008)

    Article  Google Scholar 

  18. Saquib M., Muneer M.: Photocatalytic degradation of CI Acid Green 25 and CI Acid Red 88 in aqueous suspensions of titanium dioxide. Coloration Technol. 118, 307–315 (2002)

    Article  Google Scholar 

  19. Bhandari S., Vardia J., Malkani R.K., Ameta S.C.: Effect of transition metal ions on photocatalytic activity of ZnO in bleaching of some dyes. Toxicol. Environ. Chem. 88, 35 (2006)

    Article  Google Scholar 

  20. Shapiro M.P., Setlow B., Setlow P.: Killing of Bacillus subtilis spores by a modified Fenton reagent containing CuCl2 and ascorbic acid. Appl. Environ. Microbiol. 70, 2535–2539 (2004)

    Article  Google Scholar 

  21. Seoudi R., El-Bailly A.B., Eisa W., Shabaka A.A., Soliman S.I., Abd El R.K., Romadan R.A.: Synthesis, optical and dielectric properties of (PVA/CdS) nanocomposites. J. Appl. Sci. Res. 8, 658–667 (2012)

    Google Scholar 

  22. Sahay P.P., Nath R.K., Tewari S.: Optical properties of thermally evaporated CdS thin films. Cryst. Res. Technol. 42, 275–280 (2007)

    Article  Google Scholar 

  23. Ali M.A., Bashier S.A.: Effect of fast green dye on some biophysical properties of thymocytes and splenocytes of albino mice. Food Addit Contam. 23, 452–461 (2006)

    Article  Google Scholar 

  24. Sultan M., Tahir H., Ahmed K., Jahanzeb Q.: The kinetics study of the reduction of fast green dye with cetylpyridinum chloride as cationic surfactant. Front. Chem. China 6, 105–112 (2011)

    Article  Google Scholar 

  25. Singh S.C., Gopal R.: Laser irradiance and wavelength-dependent compositional evolution of inorganic ZnO and ZnOOH/organic SDS nanocomposite material. J. Phys. Chem. 112, 2812–2819 (2008)

    Google Scholar 

  26. Wuw H., Pan W.: Preparation of zinc oxide nanofibers by electrospinning. J. Am. Ceram. Soc. 89, 699–701 (2006)

    Article  Google Scholar 

  27. Bharti B., Kalia S., Kumar S., Kumar A., Mittal H.: Surface functionalization of sisal fibers using peroxide treatment followed by grafting of poly(ethyl acrylate) and copolymers. Int. J. Polym. Anal. Charact. 18, 596–607 (2013)

    Article  Google Scholar 

  28. Michaelis D., Wohrle J., Rathousky M.W.: Electrodeposition of porous zinc oxide electrodes in the presence of sodiumlaurylsulfate. Thin Solid Films 497, 163–169 (2006)

    Article  Google Scholar 

  29. Vanheusden K., Warren W.L., Seager C.H., Tallant D.R., Voigt J.A., Gnade B.E.: Mechanism behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983–7991 (1996)

    Article  Google Scholar 

  30. Shi L., Gunasekaran S.: Preparation of pectin-ZnO nanocomposite. Nanoscale Res. Lett. 3, 491–495 (2008)

    Article  Google Scholar 

  31. Sahal M., Hariti B., Ridah A., Mollar M., Mari B.: Structural, electrical and optical properties of ZnO thin films deposited by sol–gel method. Microelectron. J. 39, 1425–1428 (2008)

    Article  Google Scholar 

  32. Samanta K., Dussan S., Katiyar R.S., Bhattacharya P.: Structural and optical properties of nanocrystalline Zn1-x Mn x O. Appl. Phys. Lett. 90, 261903-1-3 (2007)

    Article  Google Scholar 

  33. Janotti A., Vande Walle C.G.: Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501–126529 (2009)

    Article  Google Scholar 

  34. Malian E.P., Diaz O.G., Arana J., Rodriguez J.M.D., Rendon E.T., Melian J.A.H.: Kinetics and adsorption comparative study on the photocatalytic degradation of o-, m- and p-cresol. Catal. Today 129, 256–262 (2007)

    Article  Google Scholar 

  35. Gupta V.K., Ali I., Saini V.K.: Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 43, 1740–1747 (2004)

    Article  Google Scholar 

  36. Tahir H., Hammed U., Jahanzeb Q., Sultan M.: Removal of fast green dye (C.I. 42053) from an aqueous solution using Azadirachta indica leaf powder as a lowcost adsorbent. Afr. J. Biotechnol. 7, 3906–3911 (2008)

    Google Scholar 

  37. Koch A.L.: Growth measurement. In: Gerhardt, P. et al. (ed.) Methods for General and Molecular Bacteriology, pp. 248–277. American Society for Microbiology, Washington DC (1994)

  38. Azam A., Ahmed A.S., Oves M., Khan M.S., Habib S.S., Memic A.: Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int. J. Nanomedicine 7, 6003–6009 (2012)

    Article  Google Scholar 

  39. Rai, M.K.; Deshmukh, S.D.; Ingle, A.P.; Gade, A.K.: Silver nanoparticles: the powerful nanoweapon against multidrugresistant bacteria. J. Appl. Microbiol. 112, 841–852 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Thakur, A., Rangra, V.S. et al. Synthesis and Use of Low-Band-Gap ZnO Nanoparticles for Water Treatment. Arab J Sci Eng 41, 2393–2398 (2016). https://doi.org/10.1007/s13369-015-1852-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1852-1

Keywords

Navigation