Skip to main content
Log in

Numerical Investigation of Heat Transfer, Pressure Drop and Wall Shear Stress Characteristics of Al2O3-Water Nanofluid in a Square Duct

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Turbulent heat transfer, pressure drop and wall shear stress behavior of the nanofluid Al2O3-water mixture in a square duct under constant wall heat flux are investigated numerically. Single-phase approach is taken into account during the simulations. All of the nanofluid properties depend on the temperature and the nanoparticle volume concentration. The renormalization group theory RNG \({k-\varepsilon}\) model is employed in order to model turbulence. Validation tests of the numerical results are done by using water as the first working fluid. Similar models and methods are chosen for the simulation of nanofluid (Al2O3-water) flow and heat transfer. A very good agreement is realized with the previous water and nanofluid related theoretical-empirical heat transfer and pressure drop correlations. The rate of heat transfer is increased by the presence of nanofluids when compared to that of water. Increasing Re number and particle’s volumetric concentration increases the convection heat transfer coefficient, pressure drop and wall shear stress along the duct. On the other hand, this study confirmed that single-phase model approach is appropriate for the simulation of Al2O3-water flow and heat transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a P :

Coefficient of P cell

\({{C}_{1\varepsilon}}\) :

Turbulent model constant (= 1.42)

\({{C}_{2\varepsilon}}\) :

Turbulent model constant (= 1.68)

C p :

Constant pressure specific heat (J/kgK)

\({{C}_{\mu}}\) :

Turbulent model constant (= 0.0845)

c :

Constant part of the source term

D :

Hydraulic diameter (m)

f :

Darcy friction factor

g :

Gravitational acceleration (m/s2)

h :

Convection heat transfer coefficient (W/m2K)

I :

Turbulent intensity \({({=}{u}'/\overline u)}\)

k :

Turbulent kinetic energy (m2/s)

L :

Length of the duct (m)

l :

Turbulent mixing length (m)

\({{l}_{\varepsilon}}\) :

Length scale of turbulent kinetic energy dissipation (m)

\({{l}_{\mu}}\) :

Length scale of viscosity (m)

Nu :

Nusselt number

P :

Pressure (Pa)

Pr :

Prandtl number

\({q^{\prime\prime}}\) :

Wall heat flux (W/m2)

\({R^\prime}\) :

Effect of strain in \({\varepsilon}\) equation (kg/ms4)

Re :

Re number

S :

Modulus of mean rate of strain tensor (1/s)

T :

Temperature (K)

\({{\overline{u}}}\) :

Time-averaged mean velocity (m/s)

\({u^\prime}\) :

Instantaneous velocity component (m/s)

u :

Velocity (m/s)

t :

Time (s)

u :

Velocity (m/s)

X :

Distance from the entrance of the duct (m)

\({y^{\ast}}\) :

Non-dimensional viscous sublayer thickness

\({y_{T}^\ast}\) :

Non-dimensional thermal sublayer thickness

\({\alpha}\) :

Inverse effective Pr number (= 1/Pr)

\({\alpha_{\varepsilon}}\) :

Inverse effective Pr number for dissipation rate of turbulent kinetic energy (= 1/\({{\rm Pr}_{\varepsilon}}\))

\({\alpha_{k}}\) :

Inverse effective Pr number for turbulent kinetic energy (= 1/Pr k )

\({\alpha_{t}}\) :

Inverse effective Pr number for turbulent flow (= 1/Pr t )

\({\beta}\) :

Model constant (= 0.012)

\({\Delta {P}}\) :

Pressure drop (Pa)

\({\varepsilon}\) :

Turbulent kinetic energy dissipation rate (m2/s3)

\({\eta}\) :

Rate of strain in turbulent flow (\({={\rm Sk}/\varepsilon)}\)

\({\tau}\) :

Wall shear stress (N/m2)

\({\eta_{0}}\) :

Model constant (= 4.38)

\({\lambda}\) :

Thermal conductivity (W/mK)

\({\mu}\) :

Molecular viscosity (kg/ms)

\({\phi}\) :

Volumetric concentration of nanoparticles

\({\rho}\) :

Density (kg/m3)

bf :

Base fluid

eff :

Effective

l :

Laminar

nb :

Neighbor cell

nf :

Nanofluid

np :

Nanoparticle

P :

P center cell

t :

Turbulent

w :

Wall

References

  1. Pak B.C., Cho Y.I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp. Heat Transf. 11, 151–170 (1998)

    Article  Google Scholar 

  2. Kays, W.M.; Crawford, M.E.: Convective Heat andMass Transfer, 3d edn. pp. 244–249. McGraw-Hill, New York (1993)

  3. Heyhat M.M., Kowsary F., Rashidi A.M., Esfehani S.A.V., Amrollahi A.: Experimental investigation of turbulent flow and convective heat transfer characteristics of alumina water nanofluids in fully developed flow regime. Int. Commun. Heat Mass Transf. 39, 1272–1278 (2012)

    Article  Google Scholar 

  4. Sahin B., Gültekin G.G., Manay E., Karagöz S.: Experimental investigation of heat transfer and pressure drop characteristics of Al2O3-water nanofluid. Exp. Therm. Fluid Sci. 50, 21–28 (2013)

    Article  Google Scholar 

  5. Hussein, A.; Sharma, K.V.; Bakar, R.A.; Kadirgama, K.: The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube. J. Nanomater. 2013, Article ID 859563 (2013). http://dx.doi.org/10.1155/2013/859563

  6. Maiga S.B., Nguyen C.T., Galanis N., Roy G., Mare T., Coqueux M.: Heat transfer enhancement in turbulent tube flow using Al2O3 nanoparticle suspension. Int. J. Numer. Methods Heat Fluid Flow 16, 275–292 (2006)

    Article  Google Scholar 

  7. Bayat J., Nikseresht A.H.: Thermal performance and pressure drop analysis of nanofluids in turbulent forced convective flows. Int. J. Therm. Sci. 60, 236–243 (2012)

    Article  Google Scholar 

  8. Bianco V., Manca O., Nardini S.: Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube. Int. J. Therm. Sci. 50, 341–349 (2011)

    Article  Google Scholar 

  9. Heris S.Z., Nassan T.H., Noie S.H., Sardarabadi H., Sardarabadi M.: Laminar convective heat transfer of Al2O3/water nanofluid through square cross-sectional duct. Int. J. Heat Fluid Flow 44, 375–382 (2013)

    Article  Google Scholar 

  10. Heris S.Z., Kazemi B., Noie S.H., Rezvan S.: Numerical study on convective heat transfer of Al2O3/Water, CuO/Water and Cu/Water nanofluids through square cross-section duct in laminar flow. Eng. Appl. Comput. Fluid Mech. 6, 1–14 (2012)

    Google Scholar 

  11. Bianco V., Nardini S., Manca O.: Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes. Nanoscale Res. Lett. 6, 1–12 (2011)

    Article  Google Scholar 

  12. Sahin A.Z.: Irreversibilities in various duct geometries with constant wall heat flux and laminar flow. Energy 23(6), 465–473 (1998)

    Article  Google Scholar 

  13. Kaya O.: Numerical study of turbulent flow and heat transfer of Al2O3-water mixture in a square duct with uniform heat flux. Heat Mass Transf. 49, 1549–1563 (2013)

    Article  Google Scholar 

  14. Xuan Y., Li Q.: Investigation on convective heat transfer and flow features of nanofluids. J. Heat Transf. 125, 151–155 (2003)

    Article  Google Scholar 

  15. Nguyen, C.T.; Roy, G.; Lajoie, P.R.: Refroidissement des microprocesseurs a haute performance en utilisant des nano fluides. Congres Français de Thermique, SFT, Reims, 30 mai-2 juin 2005 (2005)

  16. Luciu, R.S.; Mateescu, T.; Cotorobai, V.; Mare, T.: Nusselt number and convection heat transfer coefficient for a coaxial heat exchanger using Al2O3-Water pH = 5 nanofluid, Buletinul Inst. Polit Iaşi, t.LV (LIX), f.2 71–80 (2009)

  17. Fluent User’s Guide: Fluent Incorporated Centerra Resource Park, Lebanon (1998)

  18. Dittus F.W., Boelter L.M.K.: Heat transfer for automobile radiators of the tubular type. Univ. Calif. Publ. Eng. 11, 443–461 (1930)

    Google Scholar 

  19. Gnielinski V.: New equations for heat and mass transfer in turbulent pipe and channel flow. Int. Chem. Eng 16, 359–368 (1976)

    Google Scholar 

  20. Notter R.H., Rouse M.W.: A solution to the turbulent Graetz problem, III. Fully developed region heat transfer rates. Chem. Eng. Sci. 27, 2073–2093 (1972)

    Article  Google Scholar 

  21. Petukhov, B.S.: Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties, Advances in Heat Transfer, vol. 6. pp. 504–564. Academic Press. Inc, New York (1970)

  22. Blasius H.: Grenzschichten in Flussigkeiten mit kleiner reibung (German). Z. Math. Phys. 56, 1–37 (1908)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okyar Kaya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaya, O. Numerical Investigation of Heat Transfer, Pressure Drop and Wall Shear Stress Characteristics of Al2O3-Water Nanofluid in a Square Duct. Arab J Sci Eng 40, 3641–3655 (2015). https://doi.org/10.1007/s13369-015-1790-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1790-y

Keywords

Navigation