Skip to main content
Log in

Embedded Adaptive Fuzzy Controller Based on Reinforcement Learning for DC Motor with Flexible Shaft

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, we propose an adaptive fuzzy controller in which the scaling factors of the input/output membership functions are adapted in the real time using a Reinforcement Q-Learning algorithm based on a proposed reward function. The proposed controller is implemented practically using an Arduino DUE board to control a DC motor with flexible shaft. The practical results show that the performance of the proposed controller is significantly improved compared with the other controllers. Also, the results show better performance over a wide range of the measurement errors and load disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohan B., Sinha A.: Mathematical models of the simplest fuzzy PI/PD controllers with skewed input and output fuzzy sets. ISA Trans. 47, 300–310 (2008)

    Article  Google Scholar 

  2. Mohan, B.M.; Patel, A.V.: Analytical structures and analysis of the simplest fuzzy PD controllers. Syst. Man Cybern. Part B Cybern. IEEE Trans. 32, 239–248 (2002)

  3. Patel A., Mohan B.: Analytical structure and analysis of the simplest fuzzy PI controllers. Automatica 38, 981–993 (2002)

    Article  MathSciNet  Google Scholar 

  4. Ying H.: Practical design of nonlinear fuzzy controllers with stability analysis for regulating processes with unknown mathematical models. Automatica 30, 1185–1195 (1994)

    Article  Google Scholar 

  5. El-Nagar A., El-Bardini M.: Practical implementation for the interval type-2 fuzzy PID controller using a low cost microcontroller. Ain Shams Eng. J. 5, 475–487 (2014)

    Article  Google Scholar 

  6. El-Bardini M., El-Nagar A.: Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. ISA Trans. 53, 732–743 (2014)

    Article  Google Scholar 

  7. El-Nagar A., El-Bardini M.: Derivation and stability analysis of the analytical structures of the interval type-2 fuzzy PID controller. Appl. Soft Comput. 24, 704–716 (2014)

    Article  Google Scholar 

  8. Mohan B., Sinha A.: Analytical structure and stability analysis of a fuzzy PID controller. Appl. Soft Comput. 8, 749–758 (2008)

    Article  Google Scholar 

  9. Li W., Chang X.: Application of hybrid fuzzy logic proportional plus conventional integral-derivative controller to combustion control of stroker-fired boilers. Fuzzy Sets Syst. 111, 267–284 (2000)

    Article  MathSciNet  Google Scholar 

  10. Sharms R., Rana K., Kumar V.: Performance analysis of fractional order fuzzy PID controllers applied to a robotic manipulator. Expert Syst. Appl. 41, 4274–4289 (2014)

    Article  Google Scholar 

  11. Xu J.X., Hang C.C., Liu C.: Parallel structure and tuning of a fuzzy PID controller. Automatica 36, 673–684 (2000)

    Article  MathSciNet  Google Scholar 

  12. Kumar V., Mittal A.: Parallel fuzzy P+ fuzzy I+ fuzzy D controller: design and performance evaluation. Int. J. Autom. Comput. 7, 463–471 (2010)

    Article  Google Scholar 

  13. Woo Z.W., Chung H.Y., Lin J.J.: A PID type fuzzy controller with self-tuning scaling factors. Fuzzy Sets Syst. 115, 321–326 (2000)

    Article  Google Scholar 

  14. Syafiie S., Tadeo F., Martinez E.: Model-free learning control of neutralization processes using reinforcement learning. Eng. Appl. Artif. Intell. 20, 767–782 (2007)

    Article  Google Scholar 

  15. Quah K.H., Quek C., Leedham G.: Reinforcement learning combined with a fuzzy adaptive learning control network (FALCON-R) for pattern classification. Pattern Recognit. 38, 513–526 (2005)

    Article  Google Scholar 

  16. Lewis L.F., Vrabie D.: Reinforcement learning and adaptive dynamic programming for feedback control. Circ. Syst. Mag. IEEE 9, 32–50 (2009)

    Article  Google Scholar 

  17. Sutton R.S., Barto A.G.: Introduction to Reinforcement Learning. The MIT Press, Cambridge (1998)

    Google Scholar 

  18. Sutton R.S., Barto A.G., Williams R.J.: Reinforcement learning is direct adaptive optimal control. Control Syst. IEEE 12, 19–22 (1992)

    Article  Google Scholar 

  19. Xu X., Zuo L., Huang Z.: Reinforcement learning algorithms with function approximation: recent advances and applications. Inf. Sci. 261, 1–31 (2014)

    Article  MathSciNet  Google Scholar 

  20. Na J., Herrmann G.: Online adaptive approximate optimal tracking control with simplified dual approximation structure for continuous-time unknown nonlinear systems. Autom. Sin. IEEE/CAA J. 1, 412–422 (2014)

    Google Scholar 

  21. Neumann, G.: The reinforcement learning toolbox, reinforcement learning for optimal control tasks. na (2005)

  22. Lewis F.L., Vrabie D., Vamvoudakis K.G.: Reinforcement learning and feedback control: using natural decision methods to design optimal adaptive controllers. Control Syst. IEEE 32, 76–105 (2012)

    Article  MathSciNet  Google Scholar 

  23. Boubertakh H., Tadjine M., Glorennec P.Y., Labiod S.: Tuning fuzzy PD and PI controllers using reinforcement learning. ISA Trans. 49, 543–551 (2010)

    Article  Google Scholar 

  24. El-Nagar A.M., El-Bardini M., El-Rabaie N.M.: Intelligent control for nonlinear inverted pendulum based on interval type-2 fuzzy PD controller. Alex. Eng. J. 53, 23–32 (2014)

    Article  Google Scholar 

  25. Ogata, K.: Modern control engineering. terza edizione (1997)

  26. Burns R.: Advanced Control Engineering. Butterworth-Heinemann, London (2001)

    Google Scholar 

  27. Ramadan E.A.E.H.M., El-Bardini M., El-Rabaie N.M., Fkirin M.A.: Embedded system based on a real time fuzzy motor. Ain Shams Eng. J. 5, 399–409 (2014)

    Article  Google Scholar 

  28. Ramadan E.A., El-bardini M., Fkirin M.A.: Design and FPGA-implementation of an improved adaptive fuzzy logic controller for DC motor speed control. Ain Shams Eng. J. 5, 803–816 (2014)

    Article  Google Scholar 

  29. Xiaohui, L.; Bingzhao, G.; Hong C.: Q-learning based adaptive PID controller design for AMT clutch engagement during start-up process. In: Control conference (CCC), 31st Chinese. pp. 3131–3136 (2012)

  30. Fernandez-Gauna B., Ansoategui I., Etxeberria-Agiriano I., Graña M.: Reinforcement learning of ball screw feed drive controllers. Eng. Appl. Artif. Intell. 30, 107–117 (2014)

    Article  Google Scholar 

  31. Bonarini A., Lazaric A., Montrone F., Restelli M.: Reinforcement distribution in fuzzy Q-learning. Fuzzy Sets Syst. 160, 1420–1443 (2009)

    Article  MathSciNet  Google Scholar 

  32. Boubertakh, H.; Glorennec, P.Y.: Optimization of a fuzzy PI controller using reinforcement learning. In: IEEE International Conference on Information and Communication Technologies: From Theory to Applications, vol. 1, pp. 1657–1662 (2006)

  33. Noel M.M., Pandian B.J.: Control Of a nonlinear liquid level system using a new artificial neural network based reinforcement learning approach. Appl. Soft Comput. 23, 444–451 (2014)

    Article  Google Scholar 

  34. Chiou J.S., Tsai S.H., Liu M.T.: A PSO-based adaptive fuzzy PID-controllers. Simul. Model. Pract. Theory 26, 49–59 (2012)

    Article  Google Scholar 

  35. Waldock, A.; Carse, B.: Fuzzy Q-learning with an adaptive representation. In: Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference, pp. 720–725 (2008)

  36. Peng J., Dubay R.: Identification and adaptive neural network control of a DC motor system with dead-zone characteristics. ISA Trans. 50, 588–598 (2011)

    Article  Google Scholar 

  37. Kara T., Eker I.: Nonlinear modeling and identification of a DC motor for bidirectional operation with real time experiments. Energy Convers. Manag. 45, 1087–1106 (2004)

    Article  Google Scholar 

  38. Na J., Chen Q., Ren X., Guo Y.: Adaptive prescribed performance motion control of servo mechanisms with friction compensation. IEEE Trans. Ind. Electron. 61, 486–494 (2014)

    Article  Google Scholar 

  39. Virgala I., Frankovsky P., Kenderova M.: Friction effect analysis of a DC motor. Ame. J. Mech. Eng. 1, 1–5 (2013)

    Article  Google Scholar 

  40. Jang J.O.: Neuro-fuzzy networks saturation compensation of DC motor systems. Mechatronics 19, 529–534 (2009)

    Article  Google Scholar 

  41. Jang J.O., Jeon G.J.: A parallel neuro-controller for DC motors containing nonlinear friction. Neurocomputing 30, 233–248 (2000)

    Article  Google Scholar 

  42. Nouri K., Dhaouadi R., Braiek N.B.: Adaptive control of a nonlinear dc motor drive using recurrent neural networks. Appl. Soft Comput. 8, 371–382 (2008)

    Article  Google Scholar 

  43. de Miguel L.J., Blázquez L.F.: Fuzzy logic-based decision-making for fault diagnosis in a DC motor. Eng. Appl. Artif. Intell. 18, 423–450 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Aziz Khater.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz Khater, A., El-Bardini, M. & El-Rabaie, N.M. Embedded Adaptive Fuzzy Controller Based on Reinforcement Learning for DC Motor with Flexible Shaft. Arab J Sci Eng 40, 2389–2406 (2015). https://doi.org/10.1007/s13369-015-1752-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1752-4

Keywords

Navigation