Skip to main content

Advertisement

Log in

Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes

  • Research Article - Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Geopolymer specimens were prepared by combination of fly ash and metakaolin activated by sodium silicate (\({{\rm Na}_{2}{\rm SiO}_{3}}\)) and sodium hydroxide (NaOH) solutions. The effect of high temperature on the compressive strength, mass loss and shrinkage of geopolymer cement pastes and ordinary portland cement (OPC) pastes were assessed experimentally. Microstructure formation and development were characterized in terms of pore structure by mercury intrusion porosimetry. The results reveal that at temperatures exceeding \({400\,^{\circ}{\rm C}}\) geopolymer cement paste is superior to OPC paste. Firstly, the compressive strength drops rapidly for the OPC paste to practically zero strength at \({600\,^{\circ}{\rm C}}\) , while it drops slowly for the fly ash–metakaolin-based geopolymer cement paste to 46 MPa at \({1000\,^{\circ}{\rm C}}\) . Secondly, while the mass loss increases for the OPC paste, it is maintained at a constant, lower value for the geopolymer cement paste. Thirdly, shrinkage of geopolymer cement paste is at least three times smaller than that of OPC paste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Temuujin J., Rickard W., Lee M., van Riessen A.: Preparation and thermal properties of fire resistance metakaolin-based geopolymer-type coatings. J. Non Cryst. Solids 357(5), 1399–1404 (2011)

    Article  Google Scholar 

  2. Zhang J.Y., Li S., Wang Y.C., Xu D.L.: Microstructural and strength evolutions of geopolymer composites reinforced by resin exposed to elevated temperature. J. Non Cryst. Solids 358(3), 620–624 (2012)

    Article  Google Scholar 

  3. Rickard W.D.A., Temuujin J., van Riessen A.: Thermal analysis of geopolymer pastes synthesized from five fly ashes of variable composition. J. Non Cryst. Solids 358(15), 1830–1839 (2012)

    Article  Google Scholar 

  4. Autef A., Joussein E., Gasgnier G., Rossignol S.: Role of the silica source on the geopolymerization rate: A thermal analysis study. J. Non Cryst. Solids 366(15), 13–21 (2013)

    Article  Google Scholar 

  5. Aredes F.G.M., Campos T.M.B., Machado J.P.B., Sakane K.K., Thim G.P., Brunelli D.D.: Effect of cure temperature on the formation of metakaolinite-based geopolymer. Ceram. Int. 41(6), 7302–7311 (2015)

    Article  Google Scholar 

  6. Sarker P.K., Mcbeath S.: Fire endurance of steel reinforced fly ash geopolymer concrete elements. Constr. Build. Mater. 90, 91–98 (2015)

    Article  Google Scholar 

  7. Pangdaeng S., Phoo-ngernkham T., Sata V., Chindaprasirt P.: Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive. Mater. Des. 53, 269–274 (2014)

    Article  Google Scholar 

  8. Yuan X.H., Chen W., Lu Z.A., Chen H.G.: Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Constr. Build. Mater. 66(15), 422–428 (2014)

    Article  Google Scholar 

  9. EN 1015-6, European Standard: Methods of test for mortar for masonry-Part 6: Determination of bulk density of fresh mortar. European Committee for Standardization (CEN) (1998)

  10. Shoaib M.M., Ahmed S.A., Balaha M.M.: Effect of fire and cooling mode on the properties of slag mortars. Cem. Concr. Res. 31, 1533–1538 (2001)

    Article  Google Scholar 

  11. Mendes A., Sanjayan J.G., Gates W.P., Collins F.: The influence of water absorption and porosity on the deterioration of cement paste and concrete exposed to elevated temperatures, as in a fire event. Cem. Concr. Compos. 34, 1067–1074 (2012)

    Article  Google Scholar 

  12. Palomo A., Grutzeck M.W., Blanco M.T.: Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29(8), 1323–1329 (1999)

    Article  Google Scholar 

  13. Rahier H., van Mele B., Wastielsm J.: Low-temperature synthesized aluminosilicate glasses part II rheological transformations during low-temperature cure and high temperature properties of a model compound. J. Mater. Sci. 31(1), 80–85 (1996)

    Article  Google Scholar 

  14. Duxson P., Lukey G.C., van Deventer J.S.J.: Physical evolution of Na-geopolymer derived from metakaolin up to \({1000^{\circ}{\rm C}}\). J. Mater. Sci. 42(9), 3044–3054 (2007)

    Article  Google Scholar 

  15. Douglas E., Bilodeau A., Malhotra V.M.: Properties and durability of alkali-activated slag concrete. ACI Mater. J. 89(5), 509–516 (1992)

    Google Scholar 

  16. Wang S.D., Pu X.C., Scrivener K.L., Pratt P.L.: Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7(27), 93–102 (1995)

    Article  Google Scholar 

  17. Collins F., Sanjayan J.G.: Microcracking and strength development of alkali activated slag concrete. Cem. Concr. Res. 23(4), 345–352 (2001)

    Article  Google Scholar 

  18. Rostasy F.S., Weib R., Wiedemann G.: Changes of pore structure of cement mortars due to temperature. Cem. Concr. Res. 10, 157–164 (1980)

    Article  Google Scholar 

  19. Shoaib M.M., Ahmed S.A., Balaha M.M.: Effect of fire and cooling mode on the properties of slag mortars. Cem. Concr. Res. 31, 1533–1538 (2001)

    Article  Google Scholar 

  20. Yuzer N., Akoz F., Dokuzer Ozturk L.: Compressive strength–color change relation in mortars at high temperature. Cem. Concr. Res. 34, 1803–1807 (2004)

    Article  Google Scholar 

  21. Georgali B., Tsakiridis P.E.: Microstructure of fire-damaged concrete. A case study. Cem. Concr. Compos. 27, 255–259 (2005)

    Article  Google Scholar 

  22. Yüzer N., Aköz F., Dokuzer Öztürk L.: Compressive strength–color change relation in mortars at high temperature. Cem. Concr. Res. 34, 1803–1807 (2004)

    Article  Google Scholar 

  23. Ranjbar N., Mehrali M., Alengaram U.J., Metselaar H.S.C., Jumaat M.Z.: Compressive strength and microstructural analysis of fly ash/palm oil fuel ash based geopolymer mortar under elevated temperatures. Constr. Build. Mater. 65, 114–121 (2014)

    Article  Google Scholar 

  24. Abdulkareem O.A., Al Bakri A.M.M., Kamarudin H., Nizar I.K., Saif A.A.: Effects of elevated temperatures on the thermal behavior and mechanical performance of fly ash geopolymer paste, mortar and lightweight concrete. Constr. Build. Mater. 50, 377–387 (2014)

    Article  Google Scholar 

  25. Diamond S.: Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res. 30(10), 1517–1525 (2000)

    Article  Google Scholar 

  26. Akkaya Y., van Breugel K., Shah S.P.: Rheological model for self-consolidating concrete. ACI Mater. J. 99(6), 549–559 (2002)

    Google Scholar 

  27. Zhang S.P., Zong L.: Evaluation of relationship between water absorption and durability of concrete materials. Adv. Mater. Sci. Eng. 2014, 373–380 (2014)

    Google Scholar 

  28. Lai W.L., Tsang W.F.: Characterization of pore systems of air/water-cured concrete using ground penetration radar(GPR) through continuous water injection. Constr. Build. Mater. 22, 250–256 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjie Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, P., Yan, C., Zhou, W. et al. Thermal Behavior of Portland Cement and Fly Ash–Metakaolin-Based Geopolymer Cement Pastes. Arab J Sci Eng 40, 2261–2269 (2015). https://doi.org/10.1007/s13369-015-1748-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1748-0

Keywords

Navigation