Skip to main content
Log in

Optical Properties of Poly(2-(5-bromo benzofuran-2-yl)-2-oxoethyl methacrylate)/Organoclay Nanocomposites

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Novel nanocomposites of benzofuran-containing polymer poly(2-(5-bromo benzofuran-2-yl)-2-oxoethyl methacrylate) with different contents of organoclay were prepared and characterized with FTIR, XRD and SEM techniques. The thermal decomposition temperature of poly(BOEMA)/organoclay nanocomposites is higher than that of pure poly(BOEMA) about 5–14 °C at 10 % weight loss. The optical characterization was tested with a UV–VIS spectrophotometer. Transmittances of nanocomposites decreased to lower values by organoclay loading. Dispersion parameters such as steepness parameter, single-oscillator parameter, average oscillator position and strength, and moments of the imaginary part of the optical spectrum were changed as a function of organoclay nanofiller. As the organoclay content increased to 5 % in the polymer matrix, the existence of wide-band tails increased to 1.30 eV whereas the optical energy gap decreased to 2.92 eV. Analysis reveals that the type of transition is the indirectly allowed one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson E.B., Long T.E.: Imidazole- and imidazolium-containing polymers for biology and material science applications. Polymer 51, 2447–2454 (2010)

    Article  Google Scholar 

  2. Suzuki Y., Ono R.J., Ueda M., Bielawski C.W.: N-heterocyclic carbene enabled synthesis of conjugated polymers. Eur. Polym. J. 49, 4276–4280 (2013)

    Article  Google Scholar 

  3. Takakazu Y.: Synthesis of π-conjugated polymers by organometallic polycondensation. Bull. Chem. Soc. Jpn. 83, 431–455 (2010)

    Article  Google Scholar 

  4. Johnson J.A., Lu Y.Y., Burts A.O., Xia Y., Durrell A.C., Tirrell D.A., Grubbs R.H.: Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules 43, 10326–10355 (2010)

    Article  Google Scholar 

  5. Powell A.B., Bielawski C.W., Cowley A.H.: Design, synthesis, and study of main chain poly(n-heterocyclic carbene) complexes: applications in electrochromic devicess. J. Am. Chem. Soc. 132, 10184–10194 (2010)

    Article  Google Scholar 

  6. Tschan M.J.L., Brulé E., Haquette P., Thomas C.M.: Synthesis of biodegradable polymers from renewable resources. Polym. Chem. 3, 836–851 (2012)

    Article  Google Scholar 

  7. Norris B.C., Bielawski C.W.: structurally dynamic materials based on bis(n-heterocyclic carbene)s and bis(isothiocyanate)s: toward reversible, conjugated polymers. Macromolecules 43, 3591–3593 (2010)

    Article  Google Scholar 

  8. Foroutan M., Nasrabadi A.T.: Investigation of the interfacial binding between single-walled carbon nanotubes and heterocyclic conjugated polymers. J. Phys. Chem. B 114, 5320–5326 (2010)

    Article  Google Scholar 

  9. Damaceanu M.D., Rusu R.D., Bruma M.: New thermally stable and organosoluble heterocyclic poly(naphthaleneimide)s. Polym. Adv. Technol. 22, 420–429 (2011)

    Article  Google Scholar 

  10. Li Y.Y., Ren A.M., Feng J.K., Yang L., Sun C.C.: A theoretical investigation on the absorption and emission properties of isomeric benzofuran trimmers. Opt. Mater. 29, 1571–1578 (2007)

    Article  Google Scholar 

  11. Koca M., Dagdelen F., Aydogdu Y.: Thermal and optical properties of benzofuran-2-yl 3-phenyl-3-methylcyclobutyl thiosemicarbazone. Mater. Lett. 58, 2901–2905 (2004)

    Article  Google Scholar 

  12. Yuan W., Ma S.: Benzofuran derivatives from alkynyl-substituted benzynes and aryl halides. Org. Lett. 16, 193–195 (2014)

    Article  Google Scholar 

  13. Rani R., Makrandi J.K.: Microwave assisted synthesis and antimicrobial activity of some 2-(benzofuran-2-yl)-7-(substituted)imidazo[2,1-b]benzothiazoles. Indian J. Chem. B. 48, 1614–1617 (2009)

    Google Scholar 

  14. Zhang H.C., Guo E.Q., Fang Y.J., Ren P.H., Yang W.J.: Synthesis and optoelectronic properties of alternating benzofuran/terfluorene copolymer with stable blue emission. J. Polym. Sci. Polym. Chem. 47, 5488–5497 (2009)

    Article  Google Scholar 

  15. Yonezumi M., Kanaoka S., Aoshima S.: Living cationic polymerization of dihydrofuran and its derivatives. J. Polym. Sci. Polym. Chem. 46, 4495–4504 (2008)

    Article  Google Scholar 

  16. Xu J., Nie G., Zhang S., Han X., Pu S., Shen L., Xiao Q.: Electrosyntheses of poly(2,3-benzofuran) films in boron trifluoride diethyl etherate containing poly(ethylene glycol) oligomers. Eur. Polym. J. 41, 1654–1661 (2005)

    Article  Google Scholar 

  17. Banihashemi A., Atabaki F.: Synthesis and characterization of new thermally stable polybenzimidazoles and poly(amide-benzimidazole)s. Eur. Polym. J. 38, 2119–2124 (2002)

    Article  Google Scholar 

  18. Erol I.: Synthesis and characterization of a new methacrylate polymer with side chain benzofurane and cyclobutane ring: thermal properties and antimicrobial activity. High Perform. Polym. 21, 411–423 (2009)

    Article  Google Scholar 

  19. Hu Y.L., Wang B.Y., Su Z.X.: Synthesis and photophysical properties of a novel green fluorescent polymer for Fe3+ sensing. Polym. Int. 57, 1343–1350 (2008)

    Article  Google Scholar 

  20. Pokladko M., Sanetra J., Gondek E., Bogdal D., Niziol J., Kityk I.V.: Synthesis and polymerisation of novel methacrylates with carbazolyl and benzofuranyl pendant groups for photovoltaic applications. Mol. Cryst. Liq. Cryst. 484, 701–710 (2008)

    Article  Google Scholar 

  21. Fujimori A., Ninomiya N., Masuko T.: Structure and mechanical properties in drawn poly(l-lactide)/clay hybrid films. J. Polym. Adv. Technol. 19, 1735–1744 (2008)

    Article  Google Scholar 

  22. Jang B.N., Costache M., Wilkie C.A.: The relationship between thermal degradation behavior of polymer and the fire retardancy of polymer/clay nanocomposites. Polymer 46, 10678–10687 (2005)

    Article  Google Scholar 

  23. Caruso F., Spasova M., Susha A., Giersig H., Caruso R.A.: Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem. Mater. 13, 109–116 (2001)

    Article  Google Scholar 

  24. Nazarenko S., Meneghetti P., Julmon P., Olson B., Qutubuddin S.: Gas barrier of polystyrene montmorillonite clay nanocomposites: Effect of mineral layer aggregationJ. Polym. Sci. B. Polym. Phys. 45, 1733–1753 (2007)

    Article  Google Scholar 

  25. Shia D., Hui C.Y., Burnside S.D., Giannelis E.P.: An interface model for the prediction of Young’s modulus of layered silicate–elastomer nanocomposites. Polym. Compos. 19, 608–617 (1998)

    Article  Google Scholar 

  26. Kim T.H., Jang L.W., Lee D.C., Choi H.J., Jhon M.S.: Synthesis and rheology of intercalated polystyrene/Na+-montmorillonite nanocomposites. Macromol. Rapid Commun. 23, 191–195 (2002)

    Article  Google Scholar 

  27. Fang F.F., Choi H.J., Joo J.: Conducting polymer/clay nanocomposites and their applications. J. Nanosci. Nanotechnol. 8, 1559–1581 (2008)

    Article  Google Scholar 

  28. Lee M.H., Dan C.H., Kim J.H., Cha J., Kim S., Hwang Y., Lee C.H.: Effect of clay on the morphology and properties of PMMA/poly (styrene-co-acrylonitrile)/clay nanocomposites prepared by melt mixing. Polymer 47, 4359–4369 (2006)

    Article  Google Scholar 

  29. Krishna S.V., Pugazhenthi G.: Properties and thermal degradation kinetics of polystyrene/organoclay nanocomposites synthesized by solvent blending method: effect of processing conditions and organoclay loading. J. Appl. Polymer. Sci. 120, 1322–1336 (2011)

    Article  Google Scholar 

  30. Kurt A.: Influence of AlCl3 on the optical properties of new synthesized 3-armed poly(methyl methacrylate) films. Turk. J. Chem. 34, 67–79 (2010)

    Google Scholar 

  31. Suin S., Shrivastava N.K., Maiti S., Khatua B.B.: Phosphonium modified organoclay as potential nanofiller for the development of exfoliated and optically transparent polycarbonate/clay nanocomposites: preparation and characterizations. Eur. Polym. J. 49, 49–60 (2013)

    Article  Google Scholar 

  32. Choudhury A., Bhowmick A.K., Ong C.: Novel role of polymer-solvent and clay-solvent interaction parameters on the thermal, mechanical and optical properties of polymer nanocomposites. Polymer 50, 201–210 (2009)

    Article  Google Scholar 

  33. Lim S.R., Chow W.S.: Characterization of optical and flammability properties of epoxy/organo-montmorillonite nanocomposites. Malays. Polym. J. 5, 99–107 (2010)

    Google Scholar 

  34. Salahuddin N., Moet A., Hiltner A., Baer E.: Nanoscale highly filled epoxy nanocomposites. Eur. Polym. J. 38, 1477–1482 (2002)

    Article  Google Scholar 

  35. Deng Y.M., Gu A.J., Fang Z.P.: The effect of morphology on the optical properties of transparent epoxy/montmorillonite composites. Polym. Int. 53, 85–91 (2004)

    Article  Google Scholar 

  36. Koca M., Kurt A., Kirilmis C., Aydogdu Y.: Synthesis, characterization, and thermal degradation of novel poly(2-(5-bromo benzofuran-2-yl)-2-oxoethyl methacrylate). Polym. Eng. Sci. 52, 323–330 (2012)

    Article  Google Scholar 

  37. Fu X., Qutubuddin S.: Polymer–clay nanocomposites: exfoliation of organophilic montmorillonite nanolayers in polystyrene. Polymer 42, 807–813 (2001)

    Article  Google Scholar 

  38. Fan X., Xia C., Advincula R.C.: Intercalation of polymerization initiators into montmorillonite platelets: free radical vs. anionic initiator clays. Colloids Surf. A Physicochem. Eng. Asp/ 219, 75–86 (2003)

    Article  Google Scholar 

  39. Zhang W.A., Chen D.Z., Xu H.Y., Shen X.F., Fang Y.E.: Influence of four different types of organophilic clay on the morphology and thermal properties of polystyrene/clay nanocomposites prepared by using the gamma-ray irradiation technique. Eur. Polym. J. 39, 2323–2328 (2003)

    Article  Google Scholar 

  40. Vyazovkin S., Dranca I., Fan X., Advincula R.: Kinetics of the thermal and thermo-oxidative degradation of a polystyrene–clay nanocomposites. Macromol. Rapid Commun. 25, 498–503 (2004)

    Article  Google Scholar 

  41. Doh J.G., Cho I.: Synthesis and properties of polystyrene organoammonium montmorillonite hybrid. Polym. Bull. 41, 511–518 (1998)

    Article  Google Scholar 

  42. Zanetti M., Bracco P., Costa L.: Thermal degradation behaviour of PE/clay nanocomposites. Polym. Degrad. Stab. 85, 657–665 (2004)

    Article  Google Scholar 

  43. Thellen C., Orroth C., Froio D., Ziegler D., Lucciarini J., Farrell R., D’Souza N.A., Ratto J.A.: Influence of montmorillonite layered silicate on plasticized poly(l-lactide) blown films. Polymer 46, 11716–11727 (2005)

    Article  Google Scholar 

  44. Lepoittevin B., Pantoustier N., Devalckenaere M., Alexandre M., Kubies D., Calderg C.: Poly(epsilon-caprolactone)/clay nanocomposites by in-situ intercalative polymerization catalyzed by dibutyltin dimethoxide. Macromolecules 35, 8385–8390 (2002)

    Article  Google Scholar 

  45. Saad G.R., Abd Elhamid E.E., Elmenyawy S.A.: Dynamic cure kinetics and thermal degradation of brominated epoxy resin–organoclay based nanocomposites. Thermochim. Acta 524, 186–193 (2011)

    Article  Google Scholar 

  46. Sun Y., Zhang Z., Moon K.S., Wong C.P.: Glass transition and relaxation behavior of epoxy nanocomposites. J. Polym. Sci. B. Polym. Phys. 42, 3849–3858 (2004)

    Article  Google Scholar 

  47. Zidan H.M., Abu-Elnader M.: Structural and optical properties of pure PMMA and metal chloride-doped PMMA films. Phys. B 355, 308–317 (2005)

    Article  Google Scholar 

  48. Islam M.R., Podder J.: Optical properties of ZnO nano fiber thin films grown by spray pyrolysis of zinc acetate precursor. Cryst. Res. Technol. 44, 286–292 (2009)

    Article  Google Scholar 

  49. Tauc, J.: Optical properties of non-crystaline solids. In: Abeles, F. (ed.) Optical Properties of Solids, pp. 277–313. North-Holland, Amsterdam (1972)

  50. Kurt A., Demirelli K.: A study on the optical properties of three-armed polystyrene and poly(styrene-b-isobutyl methacrylate). Polym. Eng. Sci. 50, 268–277 (2010)

    Article  Google Scholar 

  51. Ammar A.H.: Studies on some structural and optical properties of ZnxCd1-xTe thin films. Appl. Surf. Sci. 201, 9–19 (2002)

    Article  Google Scholar 

  52. Atyia H.E.: Influence of deposition temperature on the structural and optical properties of InSbSe3 films. J. Optoelectron. Adv. M. 8, 1359–1366 (2006)

    Google Scholar 

  53. Wemple S.H.: Refractive-index behavior of amorphous semiconductors and glasses. Phys. Rev. B 7, 3767–3777 (1973)

    Article  Google Scholar 

  54. Wemple S.H., DrDomenico M.: Oxygen-octahedra ferroelectrics. I. Theory of electro-optical and nonlinear optical effects. J. Appl. Phys. 40, 720–734 (1969)

    Article  Google Scholar 

  55. El-Nahass M.M., Abd-El-Rahman K.F., Farag A.A.M., Darwish A.A.A.: Optical characterisation of thermally evaporated nickel phthalocyanine thin films. Int. J. Mod. Phys. B 18, 421–434 (2004)

    Article  Google Scholar 

  56. Tauc J.: Amorphous and Liquid Semiconductors. Plenum Press, New York (1974)

    Book  Google Scholar 

  57. El-Zahed H., El-Korashy A., Rahem M.A.: Effect of heat treatment on some of the optical parameters of Cu9Ge11Te80 films. Vacuum 68, 19–27 (2002)

    Article  Google Scholar 

  58. Urbach F.: The long wavelength edge of photographic sensitivity and electronic absorption of solids. Phys. Rev. 92, 1324–1330 (1953)

    Article  Google Scholar 

  59. Mahr H.: Ultraviolet absorption of KI diluted in KCl crystals. Phys. Rev. 125, 1510–1516 (1962)

    Article  Google Scholar 

  60. Abu El-Fadl A., Soltan A.S., Shaalan N.M.: Temperature dependence of the indirect band gap, steepness parameter and related optical constants of [K−x(NH4)(1−x)](2)ZnCl4 mixed crystals. Opt. Laser Technol. 39, 1310 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Kurt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurt, A., Koca, M. Optical Properties of Poly(2-(5-bromo benzofuran-2-yl)-2-oxoethyl methacrylate)/Organoclay Nanocomposites. Arab J Sci Eng 40, 2975–2984 (2015). https://doi.org/10.1007/s13369-015-1738-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1738-2

Keywords

Navigation