Skip to main content
Log in

Thermal Enhancement in Storage Silos with Periodic Wall Heating

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, unsteady natural convection problem in vertical, open-ended, porous cylinder has been numerically investigated to simulate the transient heat and mass convection in the grain storage in silos. The medium is the seat of a chemical reaction, and the enclosure lateral wall is submitted to a varying temperature profile. Time-dependent boundary temperature is presented as sinusoidal function which can approximate real weather conditions. In the case of constant temperature, a map diagram comprising several characteristic parameters such as Rayleigh number, aspect ratio, buoyancy ratio and lumped effective reaction rate of the two observed flow types, with and without fluid recirculation, was obtained. In order to approve that heat exchanges are dependent of reversal flow and control parameters, the phase diagrams connecting heat transfer (Nu) to the recirculation flow rate (Q r) are proposed. The observed relative difference between sinusoidal and constant wall temperature increases with increasing Rayleigh number (Ra) and dimensionless temperature amplitudes (X A), and it is particularly sensitive to the buoyancy ratio values (N) and the reaction rate (A k). This difference passes from 18.7 % in the only thermal case to 8.15 % in the thermo-solutal case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Aspect ratio, AR/H

\({A_{\rm k}'}\) :

Lumped effective reaction rate (s−1)

A k :

Scaled lumped effective reaction rate, \({A_{\rm k}=A_{\rm k}' H^{2}/\alpha _{\rm f}}\)

Bi :

Heat transfer Biot number

Bi m :

Mass transfer Biot number

C p :

Specific heat at constant pressure (J kg−1 K−1)

C :

Dimensionless concentration

D :

Species diffusivity (m2 s−1)

G :

Gravitational acceleration (m s−2)

h :

Heat transfer coefficient at the cylinder exit (J m−2 K s−1)

H :

Cylinder height (m)

k :

Thermal conductivity (J m−1 K s−1)

K :

Porous medium permeability (m2)

Le :

Lewis number, \({Le=\alpha _{{\rm f}} /D_{{\rm eff}}}\)

Nu :

Nusselt number

N :

Buoyancy ratio

P :

Dimensionless pressure

r :

Dimensionless radial coordinate

R :

Cylinder radius (m)

Ra :

Thermal Rayleigh number, \({Ra=g\beta_{\rm T} \Delta T_{{\rm ref}}}\) \({{KH}/(\nu \cdot \alpha _{\rm f} )}\)

Ra c :

Solutal Rayleigh number, \({Ra_{\rm C} =g \beta _{\rm C} \Delta C_{{\rm ref}}}\) \({= K\, H/(\nu \cdot \alpha _{\rm f} )}\)

R k :

Conductivity ratio, R k k eff /k f

T :

Dimensionless temperature

t :

Dimensionless time

U :

Dimensionless longitudinal velocity

V :

Dimensionless radial velocity

x :

Dimensionless axial coordinate

X A :

Dimensionless amplitude

\({\alpha}\) :

Thermal diffusivity (m2 s−1)

\({\beta}\) :

Coefficients (Eq. 3)

\({\beta_{\rm T}}\) :

Thermal expansion coefficient in Eq. (1) (kg m−3 K −1)

\({\beta_{\rm C}}\) :

Solutal expansion coefficient in Eq. (1)

\({\delta}\) :

Dimensionless boundary layer thickness

\({\mu}\) :

Dynamic viscosity (kg m−1 s−1)

\({\rho}\) :

Fluid density (kg m−3)

\({\sigma}\) :

Heat capacity ratio, \({\frac{\left( {\rho C_{{\rm P}} } \right)_{{\rm eff}} }{\left( {\rho C_{{\rm P}} } \right)_{\rm f} }}\)

\({\varepsilon}\) :

Porosity

\({\tau}\) :

Dimensionless period

amb:

Ambient

c:

Cold

eff:

Effective

f:

Fluid

h:

Hot

Ref:

Reference

Max:

Maximum

pm:

Medium

' :

dimensioned values

References

  1. Roux P.: Guide pour la conception et l’exploitation de silos de stockage de produits agro-alimentaires vis-vis des risques d’explosion et d’incendie, Rapport Final, INERIS France. Mai (2000)

  2. Carrera-Rodríguez M., Martínez-González G.M., Navarrete-Bolaños J.L., Botello-Álvarez J.E., Rico-Martínez R., Jiménez-Islas H.: Transient numerical study of the ambient temperature on 2-D cereal grain storage in cylindrical silos. J. Stored Prod. Res. 47, 106–122 (2011)

    Article  Google Scholar 

  3. Lawrence J., Maier D.E.: Three-dimensional airflow distribution in a maize silo with peaked, leveled and cored grain mass configurations. Biosyst. Eng. 110, 321–329 (2011)

    Article  Google Scholar 

  4. Jimenez-Islas H., Navarrete-Bolanos J.L., Botello-Alvarez E.: Numerical study of the natural convection of heat and 2-D mass of grain stored in cylindrical silos. Agrociencia 38, 325–342 (2004)

    Google Scholar 

  5. Jian, F.; Jayas, D.S.; White, N.D.G.: Temperature fluctuations and moisture migration in wheat stored for 15 months in a metal silo in Canada. J. Stored Prod. Res. 45, 82–90 (2009)

  6. Carrera-Rodríguez M., Martínez-González G.M., Navarrete-Bolaños J.L., Botello-Álvarez R., Rico-Martínez J.E., Jiménez-Islas H.: Numerical study of the effect of the environmental temperature in the natural two-dimensional convection of heat in grain stored at cylindrical silos. Rev. Mex. Ing. Quim. 8, 77–91 (2009)

    Google Scholar 

  7. Boland J.: The analytic solution of the differential equations describing heat flow in houses. Build. Environ. 37, 1027–1035 (2002)

    Article  Google Scholar 

  8. Lu X., Viljanen M.: Analytical model for predicting whole building heat transfer. World Acad. Sci. Eng. Technol. 5, 544–548 (2011)

    Google Scholar 

  9. Antohe B.V., Lage J.L.: Amplitude effect on convection induced by time-periodic heating. Int. J. Heat Mass Transf. 39, 1121–1133 (1996)

    Article  Google Scholar 

  10. Saeid N.F.: Natural convection in porous cavity with sinusoidal bottom wall temperature variation. Int. Commun. Heat Mass Transf. 32, 454–463 (2005)

    Article  Google Scholar 

  11. Varol Y., Oztop H.F., Pop I.: Numerical analysis of natural convection for a porous rectangular enclosure with sinusoidally varying temperature profile on the bottom wall. Int. Commun. Heat Mass Transf. 35, 56–64 (2008)

    Article  Google Scholar 

  12. Ameziani D.E., Bennacer R., Bouhadef K., Azzi A.: Effect of the days scrolling on the natural convection in an open ended storage silo. Int. J. Therm. Sci. 48, 2255–2263 (2009)

    Article  Google Scholar 

  13. Khandelwal M.K., Bera P., Chakrabarti A.: Influence of periodicity of sinusoidal bottom boundary condition on natural convection in porous enclosure. Int. J. Heat Mass Transf. 55, 2889–2900 (2012)

    Article  Google Scholar 

  14. Prasad V., Chui A.: Natural convection in a cylindrical porous enclosure with internal heat generation. ASME J. Heat Transf. 111, 916–925 (1089)

    Article  Google Scholar 

  15. Pritchard D., Richardson C.N.: The effect of temperature-dependent solubility on the onset of thermosolutal convection in a horizontal porous layer. J. Fluid Mech. 571, 59–95 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Chen X., Wang S., Tao J., Tan W.: Stability analysis of thermosolutal convection in a horizontal porous layer using a thermal non-equilibrium model. Int. J. Heat Fluid Flow 32, 78–87 (2011)

    Article  Google Scholar 

  17. Himrane N., Ameziani D.E., Bouhadef K., Bennacer R.: Storage silos self ventilation: interlinked heat and mass transfer phenomenon. Numer. Heat Transf. A Appl. 66, 379–401 (2014)

    Article  Google Scholar 

  18. Tian L., Cheng Y., Shan-Hu X., Wang G.: Numerical investigation of unsteady natural convection in an inclined square enclosure with heat-generating porous medium. Heat Transf. Eng. 35, 620–629 (2014)

    Article  Google Scholar 

  19. Jupp T.E., Woods A.W.: Thermally driven reaction fronts in porous media. Int. J. Heat Fluid Mech. 484, 329–346 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

  21. Bennasrallah S., Amara T., Du Peuty M.A.: Convection naturelle instationnaire dans un cylindre rempli de grains ouvert à ses extrémités et dont la paroi est chauffée par un flux de chaleur constant: validité de l’hypothèse de l’équilibre thermique local. Int. J. Heat Mass Transf. 40, 1115–1168 (1997)

    Google Scholar 

  22. Patankar S.V.: Numerical Heat Transfer and Fluid Flow. Hemisphere/McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  23. Walker K.L., Homsy G.M.: Convection in a porous cavity. J. Fluid Mech. 87, 449–474 (1978)

    Article  MATH  Google Scholar 

  24. Trevisan O.V., Bejan A.: Natural convection with combined heat mass transfer buoyancy effects in a porous medium. Int. J. Heat Mass Transf. 28, 1597–1611 (1985)

    Article  Google Scholar 

  25. Lauriat G., Prasad V.: Non-darcian effects on natural convection in a vertical porous enclosure. Int. J. Heat Mass Transf. 32, 2135–2148 (1989)

    Article  Google Scholar 

  26. Nithiarasu P., Seetaramu K.N., Sundarajan T.: Natural convective heat transfer in an enclosure filled with a fluid saturated variable porosity medium. Int. J. Heat Mass Transf. 40, 3955–3967 (1997)

    Article  MATH  Google Scholar 

  27. Nithiarasu P., Seetaramu K.N., Sundarajan T.: Non-darcy double-diffusive convection in a fluid saturated axisymmetric porous cavities. Heat Mass Transf. 36, 427–434 (1997)

    Article  Google Scholar 

  28. Nithiarasu P., Ravindran K.: A new semi-implicit time stepping procedure for buoyancy driven flow in a fluid saturated porous medium. Comput. Methods Appl. Mech. Eng. 165, 147–154 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Baytas A.C.: Entropy generation for natural convection in an inclined porous cavity. Int. J. Heat Mass Transf. 43, 2089–2099 (2000)

    Article  MATH  Google Scholar 

  30. Massarotti N., Nithiarasu P., Zienkiewicz O.C.: Natural convection in porous medium-fluid interface problems. A finite element analysis by using the CBS procedure. Int. J. Numer. Methods Heat Fluid Flow 11, 473–490 (2001)

    Article  MATH  Google Scholar 

  31. Bennacer R., Tobbal A., Beji H., Vasseur P.: Double diffusive convection in a vertical enclosure filled with anisotropic porous media. Int. J. Therm. Sci. 40, 30–41 (2001)

    Article  Google Scholar 

  32. Saeid N.H., Pop I.: Non-darcy natural convection in a square cavity filled with a porous medium. Fluid Dyn. Res. 36, 35–43 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rashidi M.M., Rajvanshi S.C, Kavyani N., Keimenesh M., Pop I., Saini B.S.: Investigation of heat transfer in a porous annulus with pulsating pressure gradient by homotopy analysis method. Arab. J. Sci. Eng. 39, 5113–5128 (2014)

    Article  MathSciNet  Google Scholar 

  34. Bemazizia A., Benissaad S., Abboudi S.: Numerical study of double diffusion natural convection of a binary fluid in square enclosure with a partially active vertical wall. Arab. J. Sci. Eng. 38, 3459–3470 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Himrane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himrane, N., Ameziani, D.E., Bouhadef, K. et al. Thermal Enhancement in Storage Silos with Periodic Wall Heating. Arab J Sci Eng 41, 623–637 (2016). https://doi.org/10.1007/s13369-015-1701-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1701-2

Keywords

Navigation