Skip to main content
Log in

Adsorption-Based Removal of Gas-Phase Benzene Using Granular Activated Carbon (GAC) Produced from Date Palm Pits

  • Research Article - Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Kingdom of Saudi Arabia is one of the leading countries in date fruit farming, and by-products from date palm trees can be used for several important applications, including pollution control. This study successfully employed date palm pit-based granular activated carbon (GAC) to adsorb gas-phase benzene under dynamic flow conditions. The percent carbon content (w/w) for raw date palm pits and produced GAC samples was found to be 47 and 82 %, respectively. Furthermore, the specific surface area (SSABET) of the produced GAC was 822 m2/g, and the t-Plot micropore area and t-Plot external surface area were 734.99 and 87.26 m2/g, respectively. The BJH graph for the pore size distribution also indicated a mesoporous structure. The use of date palm pit-based GAC for gas-phase benzene adsorption under dynamic continuous-flow conditions showed high efficiency with breakthrough points for different systems ranging from several hours to several days. The role of surface functional groups and their interactions with the benzene rings during the adsorption process were also explored, and surface oxygen-based groups may initiate an electron donor–acceptor mechanism with the benzene’s aromatic ring \({{\boldsymbol{\pi}}}\) electrons. The findings confirmed that GAC produced from date palm pits can be successfully used for gas-phase benzene adsorption under various conditions. It is hoped that countries with large-scale date fruit farming, such as the Kingdom of Saudi Arabia, will be able to utilize this rich resource for environmental applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

GAC:

Granular activated carbon

SSABET :

BET specific surface area

References

  1. Long C.; Li Y.; Yu W.; Li A.: Removal of benzene and methyl ethyl ketone vapor: comparison of hypercrosslinked polymeric adsorbent with activated carbon. J. Hazard Mater. 203(204), 251–256 (2012)

    Article  Google Scholar 

  2. Kim K.-J.; Kang C.-S.; You Y.-J.; Chung M.-C.; Woo M.-W.; Jeong W.-J.; Park N.-C.; Ahn H.-G.: Adsorption–desorption characteristics of VOCs over impregnated activated carbons. Catal. Today 111, 223–228 (2006)

    Article  Google Scholar 

  3. Metcalf & Eddy: Wastewater Engineering: Treatment and Reuse. McGraw-Hill, New York (2003)

  4. Simonich S.L.; Begley W.M.; Debaere G.; Eckhoff W.S.: Trace analysis of fragrance materials in wastewater and treated wastewater. Environ. Sci. Technol. 34, 959–965 (2000)

    Article  Google Scholar 

  5. Shin H.-C.; Park J.-W.; Park K.; Song H.-C.: Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environ. Pollut. 119, 227–236 (2002)

    Article  Google Scholar 

  6. Borgie M.; Garat A.; Cazier F.; Delbende A.; Allorge D.; Ledoux F.; Courcot D.; Shirali P.; Dagher Z.: Traffic related air pollution. A pilot exposure assessment in Beirut, Lebanon. Chemosphere 96, 122–128 (2014)

    Article  Google Scholar 

  7. Jo W.-K.; Yang C.-H.: Granular-activated carbon adsorption followed by annular-type photocatalytic system for control of indoor aromatic compounds. Sep. Purif. Technol. 66, 438–442 (2009)

    Article  Google Scholar 

  8. Ondarts M.; Hort C.; Sochard S.; Platel V.; Moynault L.; Seby F.: Evaluation of compost and a mixture of compost and activated carbon as biofilter media for the treatment of indoor air pollution. Environ. Technol. 33, 273–284 (2012)

    Article  Google Scholar 

  9. Tham K.W.; Zuraimi M.S.; Sekhar S.C.: Emission modelling and validation of VOCs’ source strengths in air-conditioned office premises. Environ. Int. 30, 1075–1088 (2004)

    Article  Google Scholar 

  10. Wu B.-Z.; Feng T.-Z.; Sree U.; Chiu K.-H.; Lo J.-G.: Sampling and analysis of volatile organics emitted from wastewater treatment plant and drain system of an industrial science park. Anal. Chim. Acta 576, 100–111 (2006)

    Article  Google Scholar 

  11. Atasoy E.; Dogeroglu T.; Kara S.: The estimation of NMVOC emissions from an urban-scale wastewater treatment plant. Water Res. 38, 3265–3274 (2004)

    Article  Google Scholar 

  12. Nikolaou A.D.; Golfinopoulos S.K.; Kostopoulou M.N.; Kolokythas G.A.; Lekkas T.D.: Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Res. 36, 2883–2890 (2002)

    Article  Google Scholar 

  13. Escalas A.; Guadayol J.M.; Cortina M.; Rivera J.; Caixach J.: Time and space patterns of volatile organic compounds in a sewage treatment plant. Water Res. 37, 3913–3920 (2003)

    Article  Google Scholar 

  14. Khan F.I.; Ghoshal A.K.: Removal of volatile organic compounds from polluted air. J. Loss Prev. Process Ind. 13, 527–545 (2000)

    Article  Google Scholar 

  15. Lorimier C.; Subrenat A.; Coq L.L.; Cloirec P.L.: Adsorption of toluene onto activated carbon fibre cloths and felts: application to indoor air treatment. Environ. Technol. 26, 1217–1230 (2005)

    Article  Google Scholar 

  16. Moussavi G.; Rashidi R.; Khavanin A.: The efficacy of GAC/MgO composite for destructive adsorption of benzene from waste air stream. Chem. Eng. J. 228, 741–747 (2013)

    Article  Google Scholar 

  17. Veksha A.; Sasaoka E.; Uddin M.A.: The influence of porosity and surface oxygen groups of peat-based activated carbons on benzene adsorption from dry and humid air. Carbon 47, 2371–2378 (2009)

    Article  Google Scholar 

  18. Gil R.R.; Ruiz B.; Lozano M.S.; Martínc M.J.; Fuente E.: VOCs removal by adsorption onto activated carbons from biocollagenic wastes of vegetable tanning. Chem. Eng. J. 245, 80–88 (2014)

    Article  Google Scholar 

  19. Fadhil A.B.; Deyab M.M.: Conversion of some fruit stones and shells into activated carbons. Arab. J. Sci. Eng. 33, 175–184 (2008)

    Google Scholar 

  20. Nor N.M.; Chung L.L.; Teong L.K.; Mohamed A.R.: Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review. J. Environ. Chem. Eng. 1, 658–666 (2013)

    Article  Google Scholar 

  21. Dias J.M.; Alvim-Ferraz M.C.M.; Almeida M.F.; Rivera-Utrilla J.; Sánchez-Polo M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85, 833–846 (2007)

    Article  Google Scholar 

  22. Daifullah A.A.M.; Girgis B.S.: Impact of surface characteristics of activated carbon on adsorption of BTEX. Colloids Surf. A 214, 181–193 (2003)

    Article  Google Scholar 

  23. Demirba A.: Agricultural based activated carbons for the removal of dyes from aqueous solutions: a review. J. Hazard Mater. 167, 1–9 (2009)

    Article  Google Scholar 

  24. Alhamed Y.A.: Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates’ stones. J. Hazard Mater. 170, 763–770 (2009)

    Article  Google Scholar 

  25. Abdulkarim M.; Abu Al-Rub F.: Adsorption of lead ions from aqueous solution onto activated carbon and chemically-modified activated carbon prepared from date pits. Adsorp. Sci. Technol. 22, 119–134 (2004)

    Article  Google Scholar 

  26. Al-Muhtaseb S.A.; El-Naas M.H.; Abdallah S.: Removal of aluminum from aqueous solutions by adsorption on date-pit and BDH activated carbons. J. Hazard Mater. 158, 300–307 (2008)

    Article  Google Scholar 

  27. Awwad N.S.; Daifuallah A.A.M.; Al M.M.S.: Removal of Pb2+,  Cd2+,  Fe3+, and Sr2+ from aqueous solution by selected activated carbons derived from date pits. Solvent Extr. Ion Exch. 26, 764–782 (2008)

    Article  Google Scholar 

  28. Banat F.; Al-Asheh S.; Al-Makhadmeh L.: Evaluation of the use of raw and activated date pits as potential adsorbents for dye containing waters. Process Biochem. 39, 193–202 (2003)

    Article  Google Scholar 

  29. Belhachemi M.; Rios R.V.R.A.; Addoun F.; Silvestre-Albero J.; Sepúlveda-Escribano A.; Rodryíguez-Reinoso F.: Preparation of activated carbon from date pits: effect of the activation agent and liquid phase oxidation. J. Anal. Appl. Pyrolysis 86, 168–172 (2009)

    Article  Google Scholar 

  30. Bouchelta C.; Medjram M.S.; Bertrand O.; Bellat J.P.: Preparation and characterization of activated carbon from date stones by physical activation with steam. J. Anal. Appl. Pyrolysis 82, 70–77 (2008)

    Article  Google Scholar 

  31. Essa M.H.; Al-Zahrani M.A.: Date pits as potential raw materials for the production of active carbons in Saudi Arabia. Int. J. Appl. Environ. Sci. 4, 47–58 (2009)

    Google Scholar 

  32. El-Naas M.H.; Al-Zuhair S.; Alhaija M.A.: Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J. Hazard Mater. 173, 750–757 (2010)

    Article  Google Scholar 

  33. El Nemr A.; Khaled A.; Abdelwahab O.; El-Sikaily A.: Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. J. Hazard Mater. 152, 263–275 (2008)

    Article  Google Scholar 

  34. Girgis B.S.; El-Hendawy A.A.: Porosity development in activated carbons obtained from date pits under chemical activation with phosphoric acid. Micropor. Mesopor. Mater. 52, 105–117 (2002)

    Article  Google Scholar 

  35. Haimour N.M.; Emeish S.: Utilization of date stones for production of activated carbon using phosphoric acid. Waste Manag. 26, 651–660 (2006)

    Article  Google Scholar 

  36. Hameed B.H.; Salman J.M.; Ahmad A.L.: Adsorption isotherm and kinetic modeling of 2,4-D pesticide on activated carbon derived from date stones. J. Hazard Mater. 163, 121–126 (2009)

    Article  Google Scholar 

  37. Jibril B.; Houache O.; Al-Maamari R.; Al-Rashidi B.: Effects of H3PO4 and KOH in carbonization of lignocellulosic material. J. Anal. Appl. Pyrolysis 83, 151–156 (2008)

    Article  Google Scholar 

  38. Merzougui Z.; Addoun F.: Effect of oxidant treatment of date pit activated carbons application to the treatment of waters. Desalination 222, 394–403 (2008)

    Article  Google Scholar 

  39. Riahi K.; Mammou A.B.; Thayer B.B.: Date-palm fibers as a potential technology for tertiary domestic wastewater treatment. J. Hazard Mater. 161, 608–613 (2009)

    Article  Google Scholar 

  40. Riahi K.; Thayer B.B.; Mammou A.B.; Ammar A.B.; Jaafoura M.H.: Biosorption characteristics of phosphates from aqueous solution onto Phoenix dactylifera L. date palm fibers. J. Hazard Mater. 170, 511–519 (2009)

    Article  Google Scholar 

  41. Al-Ghamdi A.; Altaher H.; Omar W.: Application of date palm trunk fibers as adsorbents for removal of Cd +2 ions from aqueous solutions. J. Water Reuse Desalin. 3, 47–54 (2013)

    Article  Google Scholar 

  42. Zhou J.; Yang S.; Yu J.; Shu Z.: Novel hollow microspheres of hierarchical zinc–aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. J. Hazard Mater. 192, 1114–1121 (2011)

    Article  Google Scholar 

  43. Craig A.P.; Franca A.S.; Oliveira L.S.: Evaluation of the potential of FTIR and chemometrics for separation between defective and non-defective coffees. Food Chem. 132, 1368–1374 (2012)

    Article  Google Scholar 

  44. Guo J.; Luo Y.; Lua A.C.; Chi R.; Chen Y.-L.; Bao X.-T.; Xiang S.-X.: Adsorption of hydrogen sulphide (H2S) by activated carbons derived from oil-palm shell. Carbon 45, 330–336 (2007)

    Article  Google Scholar 

  45. Talu O.; Guo C.-J.; Hayhurst D.T.: Heterogeneous adsorption equilibria with comparable molecule and pore sizes. J. Phys. Chem. 93, 7294–7298 (1989)

    Article  Google Scholar 

  46. Das D.; Gaur V.; Verma N.: Removal of volatile organic compound by activated carbon fiber. Carbon 42, 2949–2962 (2004)

    Article  Google Scholar 

  47. El-Hendawy A.A.: Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J. Anal. Appl. Pyrolysis 75, 159–166 (2006)

    Article  Google Scholar 

  48. Ahmad F.; Daud W.M.A.W.; Ahmad M.A.; Radzi R.; Azmi A.A.: The effects of CO2 activation on porosity and surface functional groups of cocoa (Theobroma cacao) – shell based activated carbon. J. Environ. Chem. Eng. 1, 378–388 (2013)

    Article  Google Scholar 

  49. Nevskaiaa D.M.; Santianesb A.; Munoza V.; Guerrero-Ru’ıza A.: Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorption and kinetic study. Carbon 37, 1065–1074 (1999)

    Article  Google Scholar 

  50. Valdés H.; Solar V.A.; Cabrera E.H.; Veloso A.F.; Zaror C.A.: Control of released volatile organic compounds from industrial facilities using natural and acid-treated mordenites: the role of acidic surface sites on the adsorption mechanism. Chem. Eng. J. 244, 117–127 (2014)

    Article  Google Scholar 

  51. Pan B.; Xing B.: Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013 (2008)

    Article  Google Scholar 

  52. Al-Degs Y.; Khraisheh M.A.M.; Allen S.J.; Ahmad M.N.: Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res. 34, 927–935 (2000)

    Article  Google Scholar 

  53. Kim K.-J.; Kang C.-S.; You Y.-J.; Chung M.-C.; Woo M.-W.; Jeong W.-J.; Park N.-C.; Ahn H.-G.: Adsorption–desorption characteristics of VOCs over impregnated activated carbons. Catal. Today 111, 223–228 (2006)

    Article  Google Scholar 

  54. Xin Y.; Jinchang L.; Guozhuo G.; Yu J.; Qiang X.: Preparation and modification of activated carbon for benzene adsorption by steam activation in the presence of KOH. Int. J. Min. Sci. Technol. 23, 395–401 (2013)

    Article  Google Scholar 

  55. Abril J.C.; Rodenas M.A.L.; Solano A.L.; Amoros D.C.: Regeneration of activated carbons saturated with benzene or toluene using an oxygen-containing atmosphere. Chem. Eng. Sci. 65, 2190–2198 (2010)

    Article  Google Scholar 

  56. Shim W.G.; Kim S.C.: Heterogeneous adsorption and catalytic oxidation of benzene, toluene, and xylene over spent and chemically regenerated platinum catalyst supported on activated carbon. Appl. Surf. Sci. 256, 5566–5571 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shariq Vohra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vohra, M.S. Adsorption-Based Removal of Gas-Phase Benzene Using Granular Activated Carbon (GAC) Produced from Date Palm Pits. Arab J Sci Eng 40, 3007–3017 (2015). https://doi.org/10.1007/s13369-015-1683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-015-1683-0

Keywords

Navigation