Skip to main content
Log in

A Dual Role of Marine Microalga Chlorella sp. (PSDK01) in Aquaculture Effluent with Emphasis on Initial Population Density

  • Research Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The marine microalga Chlorella sp. (PSDK01) was cultured in shrimp-cultured effluent under different initial population densities (IPDs) ranging from 0.25 to 12.0 g L−1 for dual purpose (excess nutrient consumption and biomass productivity). It was found that the IPD had affected the nutrient consumption and biomass significantly (P < 0.001). A higher biomass productivity compared to that of other IPDs was achieved in 0.5 g L−1 IPD, and the concentration had reached 0.78 g L−1 d−1. In the same time, higher IPD derived higher biomass concentration (up to 5.5 g L−1) in 6 days growth, but at the end of the experiment (9th day), the biomass was slightly decreased (2 %). In the current observation, while starting IPDs 0.25–0.5 g L−1, with the increase in IPD, the biomass productivity also increased, when IPD exceed the 0.5 g L−1, the biomass productivity reversely decreased. The maximum nutrients consumption was recorded in 0.5 g L−1 IPD at the end of the experiment (9th day) as 96, 69, and 67 % for phosphate, nitrate, and nitrite, respectively. However, the highest \({{\rm NH}_{3}^{-}}\) consumption (63 %) was observed in 0.25 g L−1 on 9th day. Maximum ammonia consumption in other IPDs was resulted at 6th day, after that ammonia concentration was slightly increased from the previous concentration due to the decay of microalgae. Based on these results, to obtain the maximum nutrient consumption and biomass productivity of Chlorella sp. (PSDK01) in diverse wastewater on large-scale level, it is necessary to select a suitable IPD at around 0.5 g L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pillay, T.V.R: Aquaculture: Principles and Practices. Fishing New Books, Englands (1990)

    Google Scholar 

  2. Tovar, A.; Moreno, C.; Manuel-Vez, M.P.; Garcia-Vargas, M.: Environmental impacts of intensive aquaculture in marine waters. Water Res. 34, 334–342 (2000)

    Article  Google Scholar 

  3. Tovar, A.; Moreno, C.; Manuel-Vez, M.P.; Garcia-Vargas, M.: Environmental implications of intensive marine aquaculture in earthen ponds. Mar. Pollut. Bull. 40, 981–988 (2000)

    Article  Google Scholar 

  4. Peuhkuri, T.: Knowledge and interpretation in environmental conflict: Fish farming and eutrophication in the Archipelago Sea, SW Finland. Landsc. Urban Plan. 61, 157–168 (2002)

    Article  Google Scholar 

  5. Hazourli, S.; Ziati, M.; Benredjem, Z.; Delimi, R.; Boudiba, L.: Analysis of wastewater loaded with paint before and after treatment of coagulation–flocculation. Arab. J. Sci. Eng. 37, 897–903 (2012)

    Article  Google Scholar 

  6. Olguıin, E.J.: Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol. Adv. 22, 81–91 (2003)

    Article  Google Scholar 

  7. Mulbry, W.; Kondrad, S.; Pizarro, C.; Kebede-Westhead, E.: Treatment of dairy manure effluent using freshwater algae: Algal productivity and recovery of manure nutrients using pilot-scale algal turf scrubbers. Bioresour. Technol. 99, 8137–9142 (2008)

    Article  Google Scholar 

  8. Patel, A.; Barrington, S.; Lefsrud, M.: Microalgae for phosphorus removal and biomass production: A six species screen for dual-purpose organisms. GCB Bioenergy 4, 485–495 (2012)

    Article  Google Scholar 

  9. Munoz, R.; Guieysse, B.: Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 40, 2799–2815 (2006)

    Article  Google Scholar 

  10. Pizarro, C.; Mulbry, W.; Blersch, D.; Kangas, P.: An economic assessment of algal turf scrubber technology for treatment of dairy manure effluent. Ecol. Eng. 26, 321–327 (2006)

    Article  Google Scholar 

  11. Kumar, S.D.; Santhanam, P.; Jayalakshmi, T.; Nandakumar, R.; Ananth, S.; Devi, A.S.; Prasath, B.B.: Ex-situ studies on excessive nutrients and heavy metals removal efficacy of marine microalga Chlorella marina (Butcher) for wastewater treatment. Indian J. Geomarine Sci. (2014, in press)

  12. Guillard, R.R.L.: Culture of phytoplankton for feeding marine invertebrates. In: Smith, W.L.; Chanley, M.H. (eds.) Culture of Marine Invertebrate Animals, pp. 29–60. Plenum Press, New York (1975)

  13. Ip, P.F.; Wong, K.H.; Chen, F.: Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture. Process Biochem. 39, 1761–1766 (2004)

    Article  Google Scholar 

  14. Hirata, S.; Hayashitani, M.; Taya, M.; Tone, S.: Carbon dioxide fixation in batch culture of Chlorella sp. using a photobioreactor with a sunlight-collection device. J. Ferment. Bioeng. 81, 470–472 (1996)

    Article  Google Scholar 

  15. Hirano, A.; Ueda, R.; Hirayama, S.; Ogushi, Y.: \({{\rm CO}_{2}}\) fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22, 137–142 (1997)

    Article  Google Scholar 

  16. Craggs, R.J.; McAuley, P.J.; Smith, V.J.: Wastewater nutrient removal by marine microalgae grown on a corrugated raceway. Water Res. 31, 1701–1707 (1997)

    Article  Google Scholar 

  17. Lee, K.; Lee, C.G.: Effect of light/dark cycles on wastewater treatment by microalgae. Biotechnol. Bioprocess Eng. 6, 194–199 (2001)

    Article  Google Scholar 

  18. Singh, R.P.; Fu, D.; Fu, D.; Juan, H.: Pollutant removal efficiency of vertical sub-surface upward flow constructed wetlands for highway runoff treatment. Arab. J. Sci. Eng. 39, 3571–3578 (2014)

    Article  Google Scholar 

  19. Venkatesan, R.; Vasagam, K.P.K.; Balasubramanian, T.: Culture of marine microalgae in shrimp farm discharge water: a sustainable approach to reduce the cost production and recovery of nutrients. J. Fish. Aquat. Sci. 1, 262–269 (2006)

    Article  Google Scholar 

  20. Ahmad, F.; Khan, A.U.; Yasar, A.: The potential of Chlorella vulgaris for wastewater treatment and biodiesel production. Pak. J. Bot. 45, 461–465 (2013)

    Google Scholar 

  21. Knuckey, R.M.; Brown, M.R.; Barrett, S.M.; Hallegraeff, G.M.: Isolation of new nanoplanktonic diatom strains and their evaluation as diets for juvenile Pacific oysters (Crassostrea gigas). Aquaculture 211, 253–274 (2002)

    Article  Google Scholar 

  22. Walne, P.R.: Studies on the food value of nineteen genera of algae to juvenile bivalves of the genera Ostrea, Crassostrea, Mercenaria and Mytilis. Fish. Investig. 26, 1–62 (1970)

    Google Scholar 

  23. Strickland, S.C.; Parsons, T.R.: A Practical Handbook of Seawater Analyses, pp. 185. Bulletin of Fisheries Research Board of Canada, Ottawa (1972)

    Google Scholar 

  24. Jenkins, D.; Medsken, L.: A brucine method for the determination of nitrate in ocean, estuarine, and fresh waters. Anal. Chem. 36, 61 (1964)

    Article  Google Scholar 

  25. Richmond, A.; Zhang, C.W.; Zarmi, Y.: Efficient use of strong light for high photosynthetic productivity: Interrelationships between the optical path, the optimal population density and cell-growth inhibition. Biomol. Eng. 20, 229–236 (2003)

    Article  Google Scholar 

  26. Zar, J.H.: Biostatistical Analysis. Prentice Hall, New Jersey (1999)

    Google Scholar 

  27. Jones, A.B.; Preston, N.P.; Dennison, W.C.: Integrated treatment of shrimp effluent by sedimentation, oyster filtration and macroalga absorption: a laboratory scale study. Aquaculture 193, 155–178 (2001)

    Article  Google Scholar 

  28. Teicchert-Coddington, D.R.; Rouse, D.B.; Potss, A.; Boyd, C.E.: Treatment of harvest discharge from intensive shrimp ponds by settling. Aquac. Eng. 19, 147–161 (1999)

    Article  Google Scholar 

  29. Jackson, C.J.; Preston, N.; Buford, M.A.; Thompson, J.P.: Managing the development of sustainable shrimp farming in Australia: The role of sedimentation ponds in treatment of farm discharge water. Aquaculture 146, 113–118 (2003)

    Google Scholar 

  30. Chrismadha, T.; Borowitzka, M.A.: Effect of cell-density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J. Appl. Phycol. 6, 67–74 (1994)

    Article  Google Scholar 

  31. Richmond, A.; Zou, N.: Efficient utilization of high photon irradiance for mass production of photoautotrophic micro-organisms. J. Appl. Phycol. 11, 123–127 (1999)

    Article  Google Scholar 

  32. Hu, Q.; Guterman, H.; Richmond, A.: A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng. 51, 51–60 (1996)

    Article  Google Scholar 

  33. Chen, Y.; Wang, J.; Liu, T.; Gao, L.: Effects of initial population density (IPD) on growth and lipid composition of Nannochloropsis sp. J. Appl. Phycol. 24, 1623–1627 (2012)

    Article  Google Scholar 

  34. de Viçose, G.C.; Porta, A.; Viera, M.P.; Fernández-Palacios, H.; Izquierdo, M.S.: Effects of density on growth rates of four benthic diatoms and variations in biochemical composition associated with growth phase. J. Appl. Phycol. 24, 1427–1437 (2012)

    Article  Google Scholar 

  35. Rekha, V.; Gurusamy, R.; Santhanam, P.; Devi, A.S.; Ananth, S.: Culture and biofuel production efficiency of marine microalgae Chlorella marina and Skeletonema costatum. Indian J. Geo-marine Sci. 41, 152–158 (2012)

    Google Scholar 

  36. Devi, A.S.: Effect of Salinity, Illumination and Nitrogen Concentration on Growth and Pigment Production of Marine Phytoplankton Dunaliella sp. for Exploration of Carotene. M. Phil.; Thesis, Bharathidasan University, India (2011)

  37. Devi, A.S.; Santhanam, P.; Rekha, V.; Ananth, S.; Prasath, B.B.; Nandakumar, R.; Jeyanthi, S.; Kumar, S.D.: Culture and biofuel producing efficacy of marine microalgae Dunaliella salina and Nannochloropsis sp. J. Algal Biomass Util. 3, 38–44 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Santhanam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S.D., Santhanam, P., Lewis-Oscar, F. et al. A Dual Role of Marine Microalga Chlorella sp. (PSDK01) in Aquaculture Effluent with Emphasis on Initial Population Density. Arab J Sci Eng 40, 29–35 (2015). https://doi.org/10.1007/s13369-014-1498-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1498-4

Keywords

Navigation