Skip to main content
Log in

Thermal and Microstructure Stability of Cordierite–Mullite Ceramics Prepared from Natural Raw Materials-Part II

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Six mixtures for cordierite–mullite ceramics were synthesized at various temperatures from 1,523.15 K (1,250°C) for pure cordierite to 1,773.15 K (1,500°C) for pure mullite. Then, the samples were submitted to the test of thermal shock resistance based on cycling heating–quenching procedure. X-ray diffraction (XRD), scanning electron microscopy and mercury intrusion porosimetry (MIP) have been used to characterize the samples before and after heating–quenching test. Sample 6 of mullite was broken after 35 heating–quenching cycles, while the five other composites reminded stable over 45 cycles. The refractoriness of samples is found to be higher. XRD shows that heating–quenching procedure has led to crystallization of cordierite and mullite phases. Apart from sample 6, the pore structure is stable with slight consolidation that was found depending on cordierite/mullite ratio. Also, the microstructure images confirm the results of XRD and MIP showing crack in sample 6 only, but compact and larger particles resulting from crystal growth in other samples due to the repeated action of heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kingery W.D.: Introduction to Ceramics. Wiley, New York (1960)

    Google Scholar 

  2. Hlaváč, J.: Základy technologie silikátú. In: Elements of Silicate Technology. SNTL ALFA, Praha (1988)

  3. Petrovic R., Janackovic Dj., Zec S., Drmanic S., Kostic-Gvozdenovic Lj.: Crystallization behavior of alkoxy-derived cordierite gels. J. Sol-Gel Sci. Technol. 28, 111 (2003). doi:10.1023/A:1025649406466

    Article  Google Scholar 

  4. Smart R.M., Glasser F.P.: The subsolidus phase equilibrium and melting temperatures of MgO−Al 2 O 3SiO 2 compositions. J. Int. Ceram. 7, 90–97 (1981). doi:10.1016/0272-8842(81)90003-1

    Article  Google Scholar 

  5. Choo, Y.P.; Chow, T.Y.; Mohamad, H.: Effect of sintering temperature on the synthesis of high purity cordierite. Neutron and X-rAY scattering 2007: The International Conference. AIP Conference Proceedings, Vol. 989, pp. 161–163 (2008). doi:10.1063/1.2906055

  6. González-Velasco J.R., Gutiérrez-Ortiz M.A., Ferret R., Aranzabal A., Botas J.A.: Synthesis of cordierite monolithic honeycomb by solid state reaction of precursor oxides. J. Mater. Sci. 34, 1999–2002 (1999). doi:10.1023/A:1004578819314

    Article  Google Scholar 

  7. Evans D.L., Ficher G.R., Geiger J.E., Martin F.M.: Thermal expansion and chemical modification of cordierite. J. Am. Ceram. Soc. 63, 629–634 (1980). doi:10.1111/j.1151-2916.1980.tb09850.x

    Article  Google Scholar 

  8. Goren R., Ozgur C., Gocmez H.: The preparation of cordierite from talc, fly ash, fused silica and alumina mixtures. Ceram. Int. 32(1), 53–56 (2006). doi:10.1016/j.ceramint.2005.01.001

    Article  Google Scholar 

  9. Asanja J.A., Afolabi A.F., Salawu A.A., Adeiza S.U.: Evaluation of the refractory properties of Nigerian Ozanagogo clay deposit. J. Min. mater. Charact. Eng. 1, 321–325 (2013). doi:10.4236/jmmce.2013.16048

    Google Scholar 

  10. Ghitulica C., Andronescu E., Nicola O., Dicea A., Birsan M.: Preparation and characterization of cordierite powders. J. Eur. Ceram. Soc. 27, 711–713 (2007). doi:10.1016/j.jeurceramsoc.2006.04.089

    Article  Google Scholar 

  11. Kumta P.N., Hackenberg R.E., McMichael P., Johanson W.C.: Solution sol-gel synthesis and phase evolution studies of cordierite xerogels, aerogels and thin films. Mat. Lett. 20(5-6), 355–362 (1994). doi:10.1016/0167-577X(94)90044-2

    Article  Google Scholar 

  12. Rohana P., Neufussa K., Matéjí J., Dubskýa J., Prchlik L., Holzgartner C.: Thermal and mechanical properties of cordierite, mullite and steatite produced by plasma spraying. Ceram Int. 30(4), 597–603 (2004). doi:10.1016/j.ceramint.2003.07.004

    Article  Google Scholar 

  13. Rudolph T., Pannhorst W., Petzow G.: Determination of activation energies for the crystallization of cordierite—type glass. J. Non-Cryst. Solids. 155(3), 273–281 (1993). doi:10.1016/0022-3093(93)91262-2

    Article  Google Scholar 

  14. Goren R., Ozgur C., Ozgur C.: The preparation of cordierite from,talc, fly ash, fused silica and alumina mixtures. Ceram Int. 32(1), 53–56 (2006). doi:10.1016/j.ceramint.2005.01.001

    Article  Google Scholar 

  15. Schneider H., Eberhard E.: Thermal expansion of mullite. J. Am. Ceram. Soc 73, 2073–2076 (1990). doi:10.1111/j.1151-2916.1990.tb05270.x

    Article  Google Scholar 

  16. Schneider H., Schreuer J., Hildmann B.: Structure and properties of mullite—a Review. J. Eur. Ceram. Soc. 28, 329–344 (2008). doi:10.1016/j.jeurceramsoc.2007.03.017

    Article  Google Scholar 

  17. Yingchao D., Xuyong F., Xuefei F., Yanwei D., Xingqin L., Guangyao M.: Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash. J. Alloy. Compd. 460, 599–606 (2008). doi:10.1016/j.jallcom.2007.06.023

    Article  Google Scholar 

  18. Yingchao D., Stuart H., Jian-er Z., Zhanlin J., Jiandong W., Guangyao M.: Sintering and characterization of fly ash—based mullite with MgO addition. J. Eur. Ceram. Soc. 31, 687–695 (2011). doi:10.1016/j.jeurceramsoc.2010.12.012

    Article  Google Scholar 

  19. Chandran R.G., Patil K.C., Chandrappa G.T.: Combustion synthesis, characterization, sintering and microstructure of mullite–cordierite composites. J. Mater. Sci. Lett. 14, 548–559 (1995). doi:10.1007/BF00275372

    Article  Google Scholar 

  20. Hodge J.D.: Microstructure development in mullite–cordierite ceramics. J. Am. Ceram. Soc. 72(7), 1295–1298 (1989). doi:10.1111/j.1151-916.1989.tb09733.x

    Article  Google Scholar 

  21. Ebadzadeh T., Lee W.L.: Processing-microstructure-property relations in mullite–corderite composites. J. Eur. Ceram. Soc. 18, 837–848 (1998). doi:10.1016/S0955-2219(97)00000-9

    Article  Google Scholar 

  22. Ismail M.G., Tsunatori H., Nakai Z.: Preparation of mullite–cordierite composites composite powders by the sol-gel method: its characteristics and sintering. J. Am. Ceram. Soc. 73(3), 537–543 (1990). doi:10.1111/j.1151-2916.1990.tb06550.x

    Article  Google Scholar 

  23. Zdenék C., Boccaccini N.D., Leonelli C., Romagnoli M., Boccaccini A.R.: Fracture behaviour of refractory ceramics after cyclic thermal shock. Ceram. Silik. 50(4), 245–250 (2006)

    Google Scholar 

  24. Abdulmula A.A., Palou M., Kozánková J.: Thermal and microstructure stability of cordierite–mullite ceramics prepared from natural raw materials: Arab. J. Sci. Eng. 39(1), 67–73 (2014). doi:10.1007/s13369-013-0863-z

    Google Scholar 

  25. Gilchrist J.P.: Fuel, Furnaces and Refractories, pp. 35–70. Perga-mon Press, Oxford (1977)

    Google Scholar 

  26. Binhussain M.A., Hamzawy E.: Synthetic white marble-like material produced from natural raw materials. Arab. J. Sci. Eng. 39, 453–459 (2014). doi:10.1007/s13369-013-0917-2

    Article  Google Scholar 

  27. BinHussain M.A., Idrees M.H., Khan M.M.: The Influence of local raw materials on phase crystallization of nepheline–pyroxene glass-ceramics. Arab. J. Sci. Eng. 28(2A), 109–122 (2003)

    Google Scholar 

  28. Urtekin L., Kucukturk G., Karacay T., Uslan I., Salman S.: An investigation of thermal properties of zirconia coating on aluminum. Arab. J. Sci. Eng. 37, 2323–2332 (2012). doi:10.1007/s13369-012-0289-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Palou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albhilil, A.A., Palou, M., Kozánková, J. et al. Thermal and Microstructure Stability of Cordierite–Mullite Ceramics Prepared from Natural Raw Materials-Part II. Arab J Sci Eng 40, 151–161 (2015). https://doi.org/10.1007/s13369-014-1493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1493-9

Keywords

Navigation