Skip to main content
Log in

Development of a Model for Analyzing the Temperature Dependence of the Viscosity of Ion Conducting Polymers and Ionic Liquids

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The bond strength-coordination number fluctuation (BSCNF) model of the viscosity developed by the authors considers that the viscous flow occurs by breaking and twisting the connections between the structural units that form the melt. The analytical expression of the viscosity that results from such processes is written in terms of the average bond strength, the average coordination number, and their fluctuations of the structural units. In the present study, we use the BSCNF model to investigate the temperature dependence of the viscosity of ion conducting polymers LiClO4-PPG and NaCF3SO3-PPG, and ionic liquids[bmim][PF6], [bpy] [BF4], [bmpro][(CF3SO2)2N], [bpy] [(CF3SO2)2N] and [bmim][(CF3SO2)2N]. For ion conducting polymers, the analysis of the α-relaxation process is also presented. A case study done for ionic liquids indicates that the cooperativity for molecular motion which is evaluated from the viscosity analysis can be correlated with the diffusion coefficients and the ionic conductivities. The results of this study indicate that the BSCNF model is an effective model that could be used to analyze and interpret the measured temperature dependence of the viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bird R.B., Stewart W.E., Lightfoot E.N.: Transport phenomena. Wiley, New York (2002)

    Google Scholar 

  2. Vogel W.: Glass chemistry. Springer, Berlin (1994)

    Book  Google Scholar 

  3. Abivin P., Taylor S.D., Freed D.: Thermal behavior and viscoelasticity of heavy oils. Energy Fuels 26, 3448–3461 (2012)

    Article  Google Scholar 

  4. Recondo M.P., Elizalde B.E., Buera M.P.: Modeling temperature dependence of honey viscosity and of related supersaturated model carbohydrate systems. J. Food Eng. 77, 126–134 (2006)

    Article  Google Scholar 

  5. Moura Ramos J.J., Taveira-Marques R., Diogo H.P.: Estimation of the fragility index of indomethacin by DSC using the heating and cooling rate dependency of the glass transition. J. Pharmac. Sci. 93, 1503–1507 (2004)

    Article  Google Scholar 

  6. Voronel A., Veliyulin E., Machavariani V.S., Kisliuk A., Quitmann D.: Fractional Stokes–Einstein law for ionic transport in liquids. Phys. Rev. Lett. 80, 2630–2633 (1998)

    Article  Google Scholar 

  7. Ojovan M.I.: Viscosity and glass transition in amorphous oxides. Adv. Condens. Matter Phys. 2008, 817829 (2008)

    Google Scholar 

  8. Rouxel T.: Thermodynamics of viscous flow and elasticity of glass forming liquids in the glass transition range. J. Chem. Phys. 135, 184501 (2011)

    Google Scholar 

  9. Angell C.A., Ngai K.L., McKenna G.B., McMillan P.F., Martin S.W.: Relaxation in glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000)

    Article  Google Scholar 

  10. Kawamura, J.; Asayama, R.; Kuwata, N.; Kamishima, O.: Ionic transport in glass and polymer: hierarchical structure and dynamics. In: Sakuma, T.; Takahashi, H. (eds.) Physics of solid state ionics, pp. 193–246. Research Signpost, Kerala (2006)

  11. Guo Y., Zhang C., Lai C., Priestley R.D., D’Acunzi M., Fytas G.: Structural relaxation of polymer nanospheres under soft and hard confinement: isobaric versus isochoric conditions. ACS Nano 5, 5365–5373 (2011)

    Article  Google Scholar 

  12. Vogel H.: The law of the relation between the viscosity of liquids and the temperature. Phys. Z. 22, 645–646 (1921)

    Google Scholar 

  13. Fulcher G.S.: Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925)

    Article  Google Scholar 

  14. Tammann G., Hesse W.: The dependence of viscosity upon the temperature of supercooled liquids. Z. Anorg. Allg. Chem. 156, 245–246 (1926)

    Article  Google Scholar 

  15. Williams M.L., Landel R.F., Ferry J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  16. Aniya M.: A model for the fragility of the melts. J. Therm. Anal. Calorim. 69, 971–978 (2002)

    Article  Google Scholar 

  17. Aniya M., Shinkawa T.: A model for the fragility of metallic glass forming liquids. Mater. Trans. 48, 1793–1796 (2007)

    Article  Google Scholar 

  18. Ikeda M., Aniya M.: A model for the temperature dependence of the viscosity in Cu–As–Se system. Solid State Ionics 180, 522–526 (2009)

    Article  Google Scholar 

  19. Ndeugueu J.L., Ikeda M., Aniya M.: A comparison between the bond-strength-coordination number fluctuation model and the random walk model of viscosity. J. Therm. Anal. Calorim. 99, 33–38 (2010)

    Article  Google Scholar 

  20. Ndeugueu J.L., Ikeda M., Aniya M.: Correlation between the temperature range of cooperativity and the fragility index in ion conducting polymers. Solid State Ionics 181, 16–19 (2010)

    Article  Google Scholar 

  21. Sahara, Aniya M.: A comparative study of the viscosity of ion conducting polymers based on the bond strength-coordination number fluctuation model and other models. J. Solid State Electrochem. 16, 1883–1887 (2012)

    Article  Google Scholar 

  22. Angell C.A.: Why C1 = 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer 38, 6261–6266 (1997)

    Article  Google Scholar 

  23. Ikeda M., Aniya M.: Bond strength-coordination number fluctuation model of viscosity: an alternative model for the Vogel–Fulcher–Tammann equation and an application to bulk metallic glass forming liquids. Materials 3, 5246–5262 (2010)

    Article  Google Scholar 

  24. Aniya M., Ikeda M.: Bond strength-coordination number fluctuations and the fragility of some ion-conducting oxide and chalcogenide glass-forming liquids. Ionics 16, 7–11 (2010)

    Article  Google Scholar 

  25. Ikeda M., Aniya M.: Estimations and implications of the mean binding energy and the fluctuation between the structural units in chalcogenide glasses. J. Non Cryst. Solids 358, 2369–2372 (2012)

    Article  Google Scholar 

  26. Agrawal R.C., Pandey G.P.: Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J. Phys. D Appl. Phys. 41, 223001 (2008)

    Article  Google Scholar 

  27. Li G., Li Z., Zhang P., Zhang H., Wu Y.: Research on a gel polymer electrolyte for Li-ion batteries. Pure Appl. Chem. 80, 2553–2563 (2008)

    Google Scholar 

  28. McLin M.G., Angell C.A.: Ion-pairing effects on viscosity/conductance relations in Raman-characterized polymer electrolytes: LiClO4 and NaCF3SO3 in PPG(4000). J. Phys. Chem. 95, 9464–9469 (1991)

    Google Scholar 

  29. Klein R.J., Runt J.: Plasticized single-ion polymer conductors: conductivity, local and segmental dynamics, and interaction parameters. J. Phys. Chem. B 111, 13188–13193 (2007)

    Google Scholar 

  30. Bower D.I.: An introduction to polymer physics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  31. Hecksher T., Nielsen A.I., Olsen N.B., Dyre J.C.: Little evidence for dynamic divergences in ultraviscous molecular liquids. Nat. Phys. 4, 737–741 (2008)

    Article  Google Scholar 

  32. Ikeda M., Aniya M.: Correlation between fragility and cooperativity in bulk metallic glass-forming liquids. Intermetallics 18, 1796–1799 (2010)

    Article  Google Scholar 

  33. Kohlrausch R.: Theorie des elektrischen rückstandes in der leidner flasche. Ann. Phys. Chem. 91, 56–82 (1854)

    Google Scholar 

  34. Williams G., Watts D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970)

    Article  Google Scholar 

  35. Haruyama, O.; Sakagami, H.; Nishiyama, N.; Inoue, A.: The free volume kinetics during structural relaxation in bulk Pd-P based metallic glasses. Mater. Sci. Eng. A 449–451, 497–500 (2007)

  36. Kawamura Y., Inoue A.: Appl. Phys. Lett. 77, 1114–1116 (2000)

    Google Scholar 

  37. Böhmer R., Ngai K.L., Angell C.A., Plazek D.J.: Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 99, 4201–4209 (1993)

    Google Scholar 

  38. Palato S., Metatla N., Soldera A.: Temperature behavior of the Kohlrausch exponent for a series of vinylic polymers modelled by an all-atomistic approach. Eur. Phys. J. E 34, 90 (2011)

    Article  Google Scholar 

  39. Privalko V.P.: Glass transition in polymers: dependence of the Kohlrausch stretching exponent on the kinetic free volume fraction. J. Non Cryst. Solids 255, 259–263 (1999)

    Article  Google Scholar 

  40. Seddon K.R.: Ionic liquids for clean technology. J. Chem. Tech. Biotechnol. 68, 351–356 (1997)

    Article  Google Scholar 

  41. Guerfi A., Dontigny M., Kobayashi Y., Vijh A., Zaghib K.: Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems. J. Solid State Electrochem. 13, 1003–1014 (2009)

    Article  Google Scholar 

  42. Sun X., Ji Y., Chen J., Ma J.: Solvent impregnated resin prepared using task-specific ionic liquids for rare earth separation. J. Rare Earths 27, 932–936 (2009)

    Article  Google Scholar 

  43. Tian G., Li J., Hua Y.: Application of ionic liquids in hydrometallurgy of nonferrous metals. Trans. Nonferr Met. Soc. China 20, 513–520 (2010)

    Article  Google Scholar 

  44. Kaur D.P., Yamada K., Park J.-S., Sekhon S.S.: Correlation between ion diffusional motion and ionic conductivity for different electrolytes based on ionic liquid. J. Phys. Chem. B 113, 5381–5390 (2009)

    Google Scholar 

  45. Noda A., Hayamizu K., Watanabe M.: Pulsed-gradient spin-echo 1H and 19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 105, 4603–4610 (2001)

    Google Scholar 

  46. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, Md. A.B.H.; Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

  47. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, Md. A.B.H.; Watanabe, M.: Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109, 6103–6110 (2005)

  48. Tokuda, H.; Ishii, K.; Susan, Md. A.B.H.; Tsuzuki, S.; Hayamizu, K.; Watanabe, M.: Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 110, 2833–2839 (2006)

  49. Ikeda, M.; Aniya, M.: Correlation between ionic diffusion and cooperativity in ionic liquids. J. Phys. Soc. Jpn. 79 (Suppl. A), 150–153 (2010)

  50. Ikeda, M.; Aniya, M.: Temperature dependence of transport coefficients and cooperativity in ionic liquids. J. Rare Earths 29, 164–167 (2011) (Spec. Issue)

  51. Grandjean A., Malki M., Simonnet C., Manara D., Penelon B.: Correlation between electrical conductivity, viscosity, and structure in bolosilicate glass-forming melts. Phys. Rev. B 75, 054112 (2007)

    Article  Google Scholar 

  52. Borodin O., Smith G.D., Henderson W.: Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI ionic liquids. J. Phys. Chem. B 110, 16879–16886 (2006)

    Google Scholar 

  53. Aniya M.: Bond fluctuation model of superionic conductors: concepts and applications. Integr. Ferroelectr. 115, 81–94 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaru Aniya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aniya, M., Ikeda, M., Sahara et al. Development of a Model for Analyzing the Temperature Dependence of the Viscosity of Ion Conducting Polymers and Ionic Liquids. Arab J Sci Eng 39, 6627–6633 (2014). https://doi.org/10.1007/s13369-014-1187-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1187-3

Keywords

Navigation