Skip to main content
Log in

The Effects of Au Loading on the Electrochemical Properties of Fe1.5(PO4)(OH) Cathode Material for Lithium-Ion Batteries

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Fe1.5(PO4)(OH) loaded with Au (mass ratio = 0, 0.5, 2, 4, 6 %) was synthesized via two steps, combining microemulsion and hydrothermal techniques, and the effects of the Au loading on the electrochemical properties of Fe1.5(PO4)(OH) cathode material were investigated. The structure and morphology were studied by means of X-ray diffraction (XRD) and field emission-scanning electron microscopy (FE-SEM), and the electrochemical performances were characterized by galvanostatic charge and discharge tests. The XRD patterns showed that the Au loading modification did not affect the structure of Fe1.5(PO4)(OH). From the charge and discharge test, it was found that when the mass ratio of Au loading was 2 % the sample exhibited excellent electrochemical properties with an initial specific capacity of 182 mAhg−1 at 0.1 C and less fading of the specific capacity, retaining about 165 mAhg−1 after 25 cycles, which demonstrated that the Au loading is an effective way to improve the electron conductivity of Fe1.5(PO4)(OH). What is more, the electrochemical properties of Fe1.5(PO4)(OH)/Au synthesized at 150 °C for 24 h with a discharge specific capacity of 182 mAhg−1 are better than those of the sample synthesized at 180 °C for 24 h with a discharge specific capacity of 121 mAhg−1, which is attributed to the crystal growth of particles at high hydrothermal temperatures, showing that the particle size also has a significant influence on the electrochemical performance of electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Y.; Cao, G.: Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 20, 2251–2269 (2008)

    Article  Google Scholar 

  2. Grigoryev, E.: Kinetics of densification processes of powder materials under electropulse sintering. Arab. J. Sci. Eng. 34, 29–33 (2009)

    Google Scholar 

  3. Padhi, A.; Nanjundaswamy, K.;Goodenough, J.B.: Phospho- as positive-materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

    Article  Google Scholar 

  4. Allen, J.; Jow, T.;Wolfenstine, J.: Analysis of the FePO4 to LiFePO4 phase transition. J. Solid State Electrochem. 12, 1031–1033 (2008)

    Article  Google Scholar 

  5. Song, Y.; Zavalij, P.Y.; Suzuki, M.; Whittingham, M.S.: New iron (III) phosphate phases: crystal structure and electrochemical and magnetic properties. Inorg. chem. 41, 5778–5786 (2002)

  6. Gerbaldi, C.; Meligrana, G.; Bodoardo, S.; Tuel, A.; Penazzi, N.: FePO4 nanoparticles supported on mesoporous SBA-15: interesting cathode materials for Li-ion cells. J. Power Sources 174, 501–507 (2007)

  7. Ryu, J.; Park, C.B.; Kang, K.: Carbon nanotube-amorphous FePO4 core–shell nanowires as cathode material for Li ion batteries. Chem. Commun. 46, 7409–7411 (2010)

    Article  Google Scholar 

  8. Yang, X.; Zhang, S.; Zhang, J.; Xu, M.; Ren, P.; Li, X.; Yan, L.: The study on synthesis and modification for iron phosphate. Funct. Mater. Lett. 4, 323–326 (2011)

    Article  Google Scholar 

  9. Lindberg, M.; Christ, C.: Crystal structures of the isostructural minerals lazulite, scorzalite and barbosalite. Acta Crystallographica 12, 695–697 (1959)

    Article  Google Scholar 

  10. Redhammer, G.; Tippelt, G.; Roth, G.; Lottermoser, W.; Amthauer, G.: Structure and mössbauer spectroscopy of barbosalite Fe2+ Fe3+ 2(PO4)2(OH)2 between 80K and 300K. Phys. Chem. Miner. 27, 419–429 (2000)

  11. Moore, P.B.: Basic ferric phosphates: a crystallochemical principle. Sci. (New York, NY) 164, 1063–1064 (1969)

    Article  Google Scholar 

  12. Fanfani, I.; Zanazzi, P.: The crystal structure of beraunite. Acta Crystallographica 22, 173–181 (1967)

    Article  Google Scholar 

  13. Moore, P.B.; Kampf, A.R.: Beraunite: refinement, comparative crystal chemistry, and selected bond valences. Zeitschrift für Kristallographie 201, 263–281 (1992)

  14. Song, Y.; Zavalij, P.Y.; Chernova, N.A.; Whittingham, M.S.: Synthesis, crystal structure, and electrochemical and magnetic study of new iron (III) hydroxyl-phosphates, isostructural with lipscombite. Chem. Mater. 17, 1139–1147 (2005)

  15. Yang, H.; Costin, G.; Keogh, J.; Lu, R.; Downs, R.T.: Cobaltaustinite, CaCo(AsO4)(OH), Acta Crystallographica Section E: structure reports online, 63, i53-i55 (2007)

  16. Dollé, M.; Patoux, S.; Richardson, T.J.: Lithium insertion chemistry of phosphate phases with the lipscombite structure. J. Power Sources 144, 208–213 (2005)

  17. Wang, Z.; Sun, S.; Li, F.; Chen, G.; Xia, D.; Zhao, T.; Chu, W.; Wu, Z.: Stability, electrochemical behaviors and electronic structures of iron hydroxyl-phosphate. Mater. Chem. Phys. 123, 28–34 (2010)

  18. Moon, S.J.; Kouh, T.; Lee, C.S.; Kim, C.S.: Investigation of microscopic crystal field in Co-doped lithium-iron phosphate. IEEE Trans. Magn. 45, 2584–2586 (2009)

    Article  Google Scholar 

  19. Myung, S.T.; Amine, K.; Sun, Y.K.: Surface modification of cathode materials from nano-to microscale for rechargeable lithium-ion batteries. J. Mater. Chem. 20, 7074–7095 (2010)

    Article  Google Scholar 

  20. Hu, J.; Xie, J.; Zhao, X.; Yu, H.; Zhou, X.; Cao, G.; Tu, J.: Doping effects on electronic conductivity and electrochemical performance of LiFePO4. J. Mater. Sci. Technol. 25, 405–409 (2009)

  21. Mi, C.H.; Cao, Y.X.; Zhang, X.G.; Zhao, X.B.; Li, H.L.: Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs. Powder Technol. 181, 301–306 (2008)

    Article  Google Scholar 

  22. Chang, H.H.; Chang, C.C.; Su, C.Y.; Wu, H.C.; Yang, M.H.; Wu, N.L.: Effects of TiO2 coating on high-temperature cycle performance of LiFePO4-based lithium-ion batteries. J. Power Sources 185, 466–472 (2008)

  23. Zou, B.; Wang, Y.; Zhou, S.: Spray drying-assisted synthesis of LiFePO4/C composite microspheres with high performance for lithium-ion batteries. Mater. Lett. 92, 300–303 (2013)

    Article  Google Scholar 

  24. Malik, R.; Burch, D.; Bazant, M.; Ceder, G.: Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010)

    Article  Google Scholar 

  25. Padhi, A.; Nanjundaswamy, K.; Masquelier, C.; Okada, S.; Goodenough, J.: Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. X. Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S.M., Zhang, J.X., Xu, S.J. et al. The Effects of Au Loading on the Electrochemical Properties of Fe1.5(PO4)(OH) Cathode Material for Lithium-Ion Batteries. Arab J Sci Eng 39, 6643–6649 (2014). https://doi.org/10.1007/s13369-014-1181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1181-9

Keywords

Navigation