Skip to main content
Log in

Robust Lyapunov-Based Control of Flexible-Joint Robots Using Voltage Control Strategy

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper addresses the design of a robust Lyapunov-based controller for flexible joint electrically driven robots (FJER) using voltage control strategy. To simplify the control problem, the proposed approach is free from the mechanical dynamics of the actuators, however, is related to the electrical dynamics and manipulator dynamics. As a result, the controller is designed based on a third-order model instead of a fifth-order model of the robotic system. The proposed controller is simple and fast response. The stability is guaranteed in the presence of both structured and unstructured uncertainties. Consequently, all system states are remained bounded. In addition, the position errors asymptotically converge to zero. This is the main advantage of the control approach which makes it superior to others. Simulation results on a two-link FJER show the effectiveness of the control approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomei, P.: A simple PD controller for robots with elastic joints. IEEE Trans. Autom. Control 36(10), 1208–1213 (1991)

    Article  MathSciNet  Google Scholar 

  2. Luca, A.D.; Isidori, A.; Nicolo, F.: Control of robot arm with elastic joints via nonlinear dynamic feedback, The 24th Conference on Decision Control Ft. Lauderdale, FL, pp. 1671–1679 (1985)

  3. Spong, M.W.; Khorasani, K.; Kokotovic, P.V.: An integral manifold approach to the feedback control of flexible joint robots. IEEE J. Robot. Autom. RA-3 291–300 (1987)

    Google Scholar 

  4. Subudhi, B.; Morris, A.S.: Singular perturbation based neuro-H∞ control scheme for a manipulator with flexible links and joints. Robotica 24, 151–161 (2006)

    Article  Google Scholar 

  5. Spong, M.W.: Modeling and control of elastic joint robots. ASME J. Dyn. Syst. Meas. Control 109, 310–319 (1987)

    Article  MATH  Google Scholar 

  6. Spurgeon, S.K.; Yao, L.; Lu, X.Y.: Robust tracking via sliding mode control for elastic joint manipulators. Proc. Inst. Mech. Eng. I 215(4), 405–417 (2001)

    Google Scholar 

  7. Chen, Ch-Sh.: Robust self-organizing neural-fuzzy control with uncertainty observer for MIMO nonlinear systems. IEEE Trans. Fuzzy Syst. 19(4), 694–706 (2011)

    Article  Google Scholar 

  8. Ghorbel, F.; Hung, J.Y.; Spong, M.W.: Adaptive control of flexible joint manipulators. IEEE Control Syst. Mag. 9(7), 9–13 (1989)

    Article  Google Scholar 

  9. Lee, J.; Yeon, J.S.; Park, J.H.; Lee, S.: Robust back-stepping control for flexible-joint robot manipulators IEEE/RSJ Int. Conf. Intell. Robots Syst. 183–188 (2007)

  10. Talole, E.; Kolhe, P.;Phadke, B.: Extended state observer based control of flexible joint system with experimental validation. IEEE Trans. Ind. Electron. 57(4), 1411–1419 (2010)

    Article  Google Scholar 

  11. Chaoui, H.; Sicard, P.; Gueaieb, W.: ANN-based adaptive control of robotic manipulators with friction and joint elasticity. IEEE Trans Ind. Electron. 56(8), 3174–3187 (2009)

    Google Scholar 

  12. Wang, D.: A simple iterative learning controller for manipulators with flexible joints. Automatica 31(9), 1341–1344 (1995)

    Google Scholar 

  13. Cheah, C.C.; Liu, C.; Slotine, J.J.E.: Adaptive jacobian vision based control for robots with uncertain depth information. Automatica 46, 1228–1233 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Huang, A.-C.; Chien, M.-C.: Design of a regressor-free adaptive impedance controller for flexible-joint electrically-driven robots. IEEE Conf. Ind. Electron. Appl. 17–22 (2009)

  15. Izadbakhsh, A.; Akbarzadeh Kalat, A.; Fateh, M.M.; Rafiei, S.M.R.: A robust anti-windup control design for electrically driven robots-theory and experiment. Int. J. Control Autom. Syst. 9(5), 1005–1012 (2011)

    Google Scholar 

  16. Huang, A.-C.; Chien, M.-C.: Adaptive control of robot manipulators: a unified regressor-free approach. World Scientific Publishing Co. Pte. Ltd (2010)

  17. Readman, M.C.: Flexible Joint Robots. CRC Press, Boca Raton, FL (1994)

    Google Scholar 

  18. Morris, A.S.: Measurement and Instrumentation Principles. Butterworth-Heinemann, Oxford (2001)

    Google Scholar 

  19. Al-Bedoor, B.O.; Al-Nassar, Y.; Ghouti, L.; Adewusi, S.A.; Abdlsamad, M.: Shaft lateral and torsional vibration responses to blade(s) random vibration excitation. Arab. J. Sci. Eng. 29(1C), 39–67 (2004)

    Google Scholar 

  20. Qu, Z.; Dawson, D.M.: Robust tracking control of robot manipulators. IEEE Press, Inc., New York (1996)

  21. Fateh M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67(2), 1525–1537 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Izadbakhsh, A.; Rafiei, S.M.R.: Endpoint perfect tracking control of robots—a robust non inversion-based approach. Int. J. Control Autom. Syst. 7(6), 888–898 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Izadbakhsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Izadbakhsh, A., Fateh, M.M. Robust Lyapunov-Based Control of Flexible-Joint Robots Using Voltage Control Strategy. Arab J Sci Eng 39, 3111–3121 (2014). https://doi.org/10.1007/s13369-014-0949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-0949-2

Keywords

Navigation