Skip to main content
Log in

Supervised Classification for Lithologic Discrimination in Shaikh Ibrahim Area, NW Iraq Using Landsat Images

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to evaluate the supervised classification in discrimination of geological materials, the study intends to deal with Landsat ETM+ images to define the spectral behaviors of lithologic components and determine the adequacy of Maximum-Likelihood Classification (MLC) in discriminating various sedimentary rocks including limestone and clay deposits in Shaikh Ibrahim area, northwestern Iraq. The proposed strategy is based on color composite ratio, Principal Component Analysis (PCA), preliminary classification of Spectral Angle Mapper (SAM), and MLC. The combination of image ratios mostly cannot differentiate the sensitivity variations of weathering products of parent materials. Whereas, PCA works toward better result in categorization of most components occurrences, SAM identifies accurately the responses of several endmembers including spectral perceiving of two types of limestone. MLC discriminates significantly the configuration and lithologic-contents of various geologic formations, where they are dominated spectrally by considerable areas of carbonates (42.54 %) in addition to clay and scree deposits (22.89 %). The spectral behavior of carbonate, clay, gypsum, and iron-bearing materials are the main spectral component types in the study area which meet a reliable lithologic discrimination by using Landsat ETM+ imagery. The study result compares favorably with the available geologic map of the study area and the reconnaissance field trip’s views of lithological classes supported the discrimination result. MLC shows considerable power in discrimination of sedimentary lithologies with 100 % accuracy when interactive preliminary classification of SAM is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gad, S.; Kusky, T.: Lithological mapping in the Eastern Desert of Egypt, the Barramiya area, using Landsat thematic mapper (TM). J. Afr. Earth Sci. 44, 196–202 (2006)

    Article  Google Scholar 

  2. Qari, M.H.T.; Madani, A.A.; Matsah, M.I.M.; Hamimi, Z.: Utilization of Aster and Landsat data in geologic mapping of basement rocks of Arafat area, saudi Arabia. AJSE. 33, 99–116 (2008)

    Google Scholar 

  3. Sadiq, A.; Howari, F.: Remote sensing and spectral characteristics of desert sand from Qatar Peninsula, Arabian/Persian Gulf. Remote Sens. 1, 915–933 (2009)

    Article  Google Scholar 

  4. Hadi, F.F.: Remote sensing and GIS to study the Raw materials for cement industry in Karbala western Iraq. M.Sc. thesis, Univ. of Baghdad, Baghdad, Iraq, supervised by A. M. Abdul-Qadir (2011)

  5. Savage, S.H.; Levy, T.E.; Jones, I.W.; Prospects and problems in the use of hyperspectral imagery for archaeological remote sensing: a case study from the Faynan copper mining district, Jordan. J Archaeol. Sci. 39, 407–420 (2012)

    Article  Google Scholar 

  6. Butt, M.J.; Waqas, A.; Iqbal, M.F.; Muhammad, G.; Lodhi, M.A.K.: Assessment of urban sprawl of Islamabad metropolitan area using multi-sensor and multi-temporal satellite data. AJSE. 37, 101–114 (2012)

    Google Scholar 

  7. Mosavi, M.R.; Shiroie, M.: Efficient evolutionary algorithms for GPS satellites classification. AJSE. 37, 2003–2015 (2012)

    Google Scholar 

  8. Swayze, G.; Smith, K.; Clark l, R.; Sutley, S.; Pearson, R.; Vance, S.; Hage man, P.; Briggs, P.; Meier, A.; Singleton, M.; Roth, S.: Using imaging spectroscopy to map acidic mine waste. Environ. Sci. Technol. 34, 47–54 (2000)

    Article  Google Scholar 

  9. Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; Sutley, S.J.; Dalton, J.B.; McDougal, R.R.; Gent, C.A.: Imaging Spectroscopy, Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. J. Geophysical Res. 108(E12) (2003). doi:10.1029/JE001847

  10. Abdul-Qadir, A.M.; Hadi, F.F.: Multi spectral analysis based on remote sensing and GIS data to estimate the raw materials for Cement industry in Western Iraq. IEEE Trans. Eng. Technol. Ei compendex, ISTP 978-1-61284-365-0/11, 7, 726–733 (2011)

  11. Riaza, A.; Garcia-Melendez, E., Suarez, M.; Beisl, H.A.; Van Der, W.H.: Semi-arid iron bearing red sands on emerged areas around lake marshes (Tablas De Daimiel, Spain) using Hyperpestral Dais 7915 and rosis Spectrometer data. In: Proceedings of the workshop on airborne remote sensing for geosphysical and environmental applications, vol. 21, no. 5, pp. 937–950 (2003)

  12. Rockwell, B.W.: Spectral variations in rocks and soils containing ferric iron hydroxide and (or) sulfate minerals as seen by AVIRIS and laboratory spectroscopy. In: US Geological Survey, Open-File Report, vol. 1431 (2004)

  13. Crowley, J.K.: Visible and Near-Infrared (0.4–2.5 microns) reflectance spectra of playa evaporate minerals. J. Geophys. Res. American Geophysical Union, USA, 96, 16231–16240 (1991)

    Google Scholar 

  14. Clark, R.N.; Swayze, G.A.; Wise, R.; Livo, K.E.; Hoefen, T.M.; Kokaly, R.F.; Sutley, S.J.: USGS Digital spectral library, splib05a. US Geological Survey Open-File Report. 03–395 (2007)

  15. Rivard, B.; Arvidson, R.E.; Duncanm, I.J.; Sultan, M.; Kaliouby, E.l.: Varnish sediment and rocks controls on spectral reflectance of outcrops in arid regions. Geology. (20), 295–298 (1992)

    Google Scholar 

  16. Abdul-Qadir, A.M.; Th. Benni J.: Monitoring and evaluation of soil salinity in term of spectral response using Landsat images and GIS in Mesopotamian plain/Iraq. J. Iraqi Desert Studies, special Issue. (1st Scientific Conference, Anbar Univ., Iraq.) 2(2), 19–32 (2010)

  17. Abdul-Qadir, A.M.; Al-Jaf, A.A.: Digital processing of Landsat images to detect iron and kaolin deposits in selected sites in the Western Desert of Iraq. Iraqi J. Sci. (Baghdad Univ., Baghdad, Iraq) 50(4), pp 519– 532 (2009)

  18. Mather PM computer processing of remote sensed images, an introduction. 2nd, edn. John Wiley and Sons, New York (2003)

  19. Small, C.: The Landsat ETM+ spectral mixing space. Remote Sens. Environ. 93, 1–17 (2004)

    Google Scholar 

  20. Zumsprekel, H.; Prinz, T.: Computer enhanced multispectral remote sensing data: a useful tool for the geological mapping of Archean terrains in (semi) arid environments. Comput. Geosci. 26, 87–100 (2000)

    Google Scholar 

  21. Amer, R.; Kusky, T.; Reinert, P.C.; Ghulam,.A.: Image processing and analysis using Landsat ETM+ imagery for lithological mapping at Fawakhir, central eastern desert of Egypt. ASPRS American Society for Photogrammetry and Remote Sensing Annual Conference. Baltimore, Maryland (2009)

  22. Rajesh, H.M.: Mapping Proterozoic unconformity related uranium deposits in the Rockhole area, North Territory, Australia using Landsat ETM+ data. Ore Rev. 33, 382–396 (2008)

    Google Scholar 

  23. Perumal, K.; Bhaskaran, R.: Supervised classification performance of multispectral images. J. Comput. 2(2), 124–129 (2010)

    Google Scholar 

  24. Shafri, H.Z.M.; Suhaili, A.; Mansor, S.: The performance of maximum likelihood, spectral angle mapper, neural network and decision tree classifiers in hyperspectral image analysis. J. Comput. Sci. 3(6), 419–423 (2007)

    Google Scholar 

  25. Niemisto, A.; Lukin, V.V.; Dolia, A.N.; Harja, O.Y.; Shmulevich, I.: Misclassification correction in primary local recognition of component images of multichannel remote sensing data. In: Image and signal processing for remote sensing. In: Proceeding of SPIE, vol. 4541, no. 4, Toulouse, France, pp. 134–145 (2001)

  26. Niemisto, A.; Shmulevich, I.; Lukin, V.V.; Dolia, A.N.; Harja, O.Y.: Correction of misclassification using a proximity-based estimation method. EURASIP J. Appl. Signal Process. 8, 1142–1155 (2004)

    Article  Google Scholar 

  27. Kruse, F.A.; Boardman, J.W.; Lefkoff, A.B.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H.: The spectral image processing system (SIPS)—interactive visualization and analysis of imaging spectrometer data. Remote Sens. Environ. 44, 145–163 (1993)

    Google Scholar 

  28. Girouard, G.; Bannari, A.; El-Harti, A.; Desrochers, A.: Validated Spectral Angle Mapper for geological mapping, comparative study between high and medium spatial resolutions. ISPRS, Istanbul (2004)

  29. Van Der Meer, F.: The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Observ. Geoinform. 8, 3–17 (2006) (Netherlands)

  30. Benediktsson, J.A.; Kanellopoulos, I.: Classification of multisource and hyperspectral data based on decision fusion. IEEE Trans. Geosci. Remote Sens. 37, 1367–1377 (1999)

    Article  Google Scholar 

  31. Steele, B.M.: Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping. Remote Sens. Environ. 74, 545–556 (2000)

    Article  Google Scholar 

  32. Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W.: Remote sensing and image interpretation. 6th edn. John wiley and sons Inc., Canada (2007)

  33. Mausel, D.Lu.P.; Batistella, M.; Moran, E.: Comparison of land-cover classification methods in the Brazilian amazon basin. Photogrammetric Eng. Remote Sens. 70, 723–731 (2004)

    Article  Google Scholar 

  34. Lu, D.; Weng, Q.: A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28, 823–870 (2007)

    Article  Google Scholar 

  35. Leverington, D.W.; Moon, W.M.: Landsat-TM-based discrimination of lithological units associated with the Purtuniq ophiolite, Quebec, Canada. Remote Sens. 4, 1208–1231 (2012)

    Article  Google Scholar 

  36. Al-Daghastani, H.S.: Geomorphic map of Nineveh Governorate, northwestern Iraq using visual image interpretation. Raf. J. Sci. 18(1), 81–90 (2007)

    Google Scholar 

  37. Al-Banaa, R.G.: Structural control evaluation of hydrocarbon seepages in Northern Iraq using remote sensing techniques. Ph.D. thesis (2012), supervised by N. K. Al-Azzawi, Univ. of Mosul, College of Sciences, Mosul, Iraq

  38. Sissakian, V.K.; Hagopian, D.H.; Hassan, E.H.: Geological map of Mosul 1:1250 000. GEOSURV Library report, vol. 2314. Baghdad, Iraq (1995)

  39. Petranic, Y.: Geological map of Badush Quadrangle scale 1:100 000. In: Sissakian, V.K., Hagopian, D.H., Hassan, E.H. (eds.) Geological map of Mosul. GEOSURV Library report, vol. 2314, Baghdad, Iraq (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal M. Abdul-Qadir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdul-Qadir, A.M. Supervised Classification for Lithologic Discrimination in Shaikh Ibrahim Area, NW Iraq Using Landsat Images. Arab J Sci Eng 39, 437–451 (2014). https://doi.org/10.1007/s13369-013-0911-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0911-8

Keywords

Navigation