Skip to main content

Advertisement

Log in

Corrosion Behavior of a New Ti–3Mo Alloy in Simulated Body Fluid for Biomedical Applications

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Ti–3Mo alloy was elaborated from Ti and Mo in a standard light-arc furnace, under controlled argon atmosphere. XRD pattern as cast binary shows a mixture of Ti, Ti–Mo and Mo 9Ti4 phases. Scanning electron microscopy, energy dispersive X-ray spectrometry analysis and optic microscope were used to characterize the binary surface. The Ti–3Mo alloy corrosion behavior was studied by chronoamperometry, electrochemical impedance spectroscopy (EIS) and Mott–Schottky techniques. The aim of the present work is to study the effects of the passivation of the oxide films developed at 1.5V versus saturated calomel electrode in 1 N H3PO4 for different anodization times (15, 30, 45, 60, 180 and 300 min) and their conductive properties in simulated body fluid solution. The anodization of the binary sample during 30 min led to the formation of n-type semiconductor which presents a charge carrier density of 1.30  ×  1020 m−3. The obtained EIS data fitting with an appropriate equivalent circuit suggests that the passive film consists of two layers present on the alloy in the range of 15–300 min for anodization. All these electrochemical results suggest that the Ti–3Mo alloy is a promising material for biomedical devices, since electrochemical stability and no toxicity are directly associated with biocompatibility. Although the studied binary is less rich in molybdenum than those cited in the literature, it nevertheless performed better than those richer in molybdenum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bouchemel, H.; Benchettara, A.: Corrosion behaviour of Ti40Cu60 alloy in H3PO4 solutions. Mater. Chem. Phys. 115, 572–577 (2009)

    Google Scholar 

  2. Badawy, W.A.; Fathi, A.M.; El-Sherief, R.M.; Fadl-Allah, S.A.: Electrochemical and biological behaviors of porous titania (TiO2) in simulated body fluids for implantation in human bodies. J. Alloys Compd., 475, 911–916 (2009)

    Google Scholar 

  3. Jakubowicz , J.: Formation of porous TiO x biomaterials in H 3PO4 electrolytes. J. Electrochem. Commun. 10, 735–739 (2008)

    Article  Google Scholar 

  4. Narayanan, R.; Seshadri, S.K. : Point defect model and corrosion of anodic oxide coatings on Ti–6Al–4V. Corros. Sci. 50, 1521–1529 (2008)

    Article  Google Scholar 

  5. Lopez, M.F.; Gutierrez, A.; Jimenez, J.A.: Surface characterization of new non-toxic titanium alloys for use as biomaterials. Surf. Sci. 482, 300–305 (2001)

    Article  Google Scholar 

  6. Kuphasuk, C.; Oshida, Y.; Andres, C.J.; Hovijitra, S.T.; Barco, M.T.; Brown, T.: Electrochemical corrosion of titanium and titanium-based alloys. J. Prosthet. Dent. 85, 195– 202 (2001)

    Google Scholar 

  7. Metikos-Hukovic, M.; Bozicevic, J.; Brinic, S.: A study of anodic films and processes on titanium- copper metallic glasses. Electrochem. Soc. 149, B450–B455 (2002)

    Google Scholar 

  8. Gurappa, I.: Protection of titanium alloy components against high temperature corrosion. Mater. Sci. Eng. A 356, 372–380 (2003)

    Google Scholar 

  9. Liu, X.; Chu, P.K.; Ding, C.: Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R 47, 49–121 (2004)

    Google Scholar 

  10. Oliveira, N.T.C.; Biaggio, S.R.; Piazza, S.; Sunseri, C.; Di Quarto, F.: Photo-electrochemical and impedance investigation of passive layers grown anodically on titanium alloys. Electrochim. Acta 49, 4563–4576 (2004)

  11. Song, H.J.; Park, S.H.; Jeong, S.H.; Park, Y.J.: Surface characteristics and bioactivity of oxide films formed by anodic spark oxidation on titanium in different electrolytes. J. Mater. Process. Techol. 209, 864–870 (2009)

    Google Scholar 

  12. Fekry, A.M.: The influence of chloride and sulphate ions on the corrosion behaviour of Ti and Ti–6Al–4V alloy in oxalic acid. Electrochim. Acta 54, 3480–3489 (2009)

    Google Scholar 

  13. Cui, X.; Kim, H.M.; Kawashita, M.; Wang, L.; Xiong, T.; Kokubo, T.; Nakamura, T.: Preparation of bioactive titania films on titanium metal via Anodic oxidation. Dent. Mater. 25, 80–86 (2009)

    Google Scholar 

  14. Krasicka-Cydzik, E.: Gel-like development during formation of thin anodic films on titanium in phosphoric acid solutions. Corros. Sci. 46, 2487–2502 (2004)

    Google Scholar 

  15. Oliveira, N.T.C.; Ferreira, E.A.; Duarte, L.T.; Biaggio, S.R.; Rocha-Filho, R.C.; Bocchi, N.: Corrosion resistance of anodic oxides on the Ti–50Zr and Ti–13Nb–13Zr alloys. Electrochim. Acta 51, 2068–2075 (2006)

    Google Scholar 

  16. de Souza, K.A.; Robin, A.: Influence of concentration and temperature on the corrosion behavior of titanium, titanium-20 and 40 % tantalum alloys and tantalum in sulfuric acid solutions. Mater. Chem. Phys. 103, 351–360 (2007)

    Google Scholar 

  17. Hallab, N.J.; Vermes, C.; Messina, C.; Roebuck, K.A.; Glant, T.T.; Jacobs J.J.: Concentration- and composition-dependent effects of metal ions on human MG-63 osteoblasts. J. Biomed. Mater. Res. 60, 420–433 (2002)

    Google Scholar 

  18. Geurtsen, W.: Biocompatibility of dental casting alloys. Crit. Rev. Oral. Biol. Med. 13, 71–84 (2002)

    Google Scholar 

  19. Ho, W.F.; Ju, C.P.; Chern Lin, J.H.: Structure and properties of cast binary Ti–Mo alloys. Biomaterials 20, 2115–2122 (1999)

    Google Scholar 

  20. Ho, W.F.: Effect of omega phase on mechanical properties of Ti–Mo alloys for biomedical applications. J. Med. Biol. Eng. 28, 47–51 (2008)

    Google Scholar 

  21. Ho, W.F.: A comparison of tensile properties and corrosion behaviour of cast Ti-7.5Mo with c. P. Ti, Ti–15Mo and Ti–6Al–4V alloys. J. Alloys Compd. 464, 580–583 (2008)

    Google Scholar 

  22. Ho, W.F.; Lai, C.H.; Hsu, H.C.; Wu, S.C.: Surface modification of a low-modulus Ti–7.5Mo alloy treated with aqueous NaOH. Surf. Coat. Techol. 203, 3142–3150 (2009)

    Google Scholar 

  23. Kumar, S.; Sankara Narayanan, T.S.N.; Saravana Kumar, S.: Influence of fluoride ion on the electrochemical behaviour of β-Ti alloy for dental implant application. Corros. Sci. 52, 1721–1727 (2010)

    Google Scholar 

  24. Trentani, L.; Pelillo, F.; Pavesi, F.C.; Ceciliani, L.; Cetta, G.; Forlino, A.: Evaluation of the TiMo12Zr6Fe2 alloy for orthopaedic implants: in vitro biocompatibility study by using primary human fibroblasts and osteoblasts. Biomaterials 23, 2863–2869 (2002)

    Google Scholar 

  25. Gordin, D.M.; Gloriant, T.; Texier, G.; Thibon, I.; Ansel, D.; Duval, J.L.; Nagel, M.D.: Development of a β-type Ti–12Mo–5Ta alloy for biomedical applications: cytocompatibility and metallurgical aspects. J. Mater. Sci. Mater. Med. 15, 885–891 (2004)

    Google Scholar 

  26. Matsuda, Y.; Nakamura, T.; Ido, K.; Oka, M.; Okumura, H.; Matsushita, T.: Femoral component made of Ti–15Mo–5Zr–3AI alloy in total hip arthroplasty. J. Orthop. Sci. 2, 166– 170 (1997)

    Google Scholar 

  27. Karthega, M.; Raman, V.; Rajendran, N.: Influence of potential on the electrochemical behavior of β titanium alloys in Hank’s solution. Acta Biomater. 3, 1019–1023 (2007)

    Google Scholar 

  28. Alves, A.P.R.; Santana, F.A.; Rosa, L.A.A.; Cursino, S.A.; Codaro, E.N.: A study on corrosion resistance of the Ti–10Mo experimental alloy after different processing methods. Mater. Sci. Eng. C 24, 693–696 (2004)

    Google Scholar 

  29. Oliveira, N.T.C.; Guastaldi, A.C.; Piazza, S.; Sunseri, C.: Photo-electrochemical investigation of anodic oxide films on cast Ti–Mo alloys. I. Anodic behaviour and effect of alloy composition. Electrochim. Acta 54, 1395–1402 (2009)

    Google Scholar 

  30. Sugano, M.; Tsuchida, Y.; Satake, T.; Ikeda, M.: A microstructural study of fatigue fracture in titanium–molybdenum alloys. Mater. Sci. Eng. A 243, 163–168 (1998)

    Google Scholar 

  31. Sukedai, E.; Yoshimitsu, D.; Matsumoto, H.; Hashimoto, H.; Kiritani, M.: β to ω phase transformation due to aging in a Ti–Mo alloy deformed in impact compression. Mater. Sci. Eng. A 350, 133–138 (2003)

    Google Scholar 

  32. Oliveira, N.T.C.; Aleixo, G.; Caram,R.; Guastaldi, A.C.: Development of Ti–Mo alloys for biomedical applications: microstructure and electrochemical characterization. Mater. Sci. Eng. A 452–453, 727–731 (2007)

    Google Scholar 

  33. Oliveira, N.T.C.; Guastaldi, A.C.: Electrochemical behavior of Ti–Mo alloys applied as biomaterial. Corros. Sci. 50, 938–945 (2008)

    Google Scholar 

  34. Zhu, S.L.; Wang,X.M.; Qin, F.X.; Inoue, A.: A new Ti-based bulk glassy alloy with potential for biomedical application. Mater, Sci. Eng. A 459, 233–237 (2007)

    Google Scholar 

  35. Gurappa, I.: Characterization of different materials for corrosion resistance under simulated body fluid conditions. Mater. Charact. 49, 73–79 (2002)

    Google Scholar 

  36. Shukla, A.K.; Balasubramaniam, R.; Bhargava, S.: Effect of replacement of V by Fe and Nb on passive film behavior of Ti–6Al–4V in simulated body fluid conditions. J. Alloys Compd. 389, 144–152 (2005)

    Google Scholar 

  37. Khadiri, M.; Benyaïch, A.; Outzourhit, A.; Ameziane, E.L.: The corrosion behavior of Ti–Cu (2 %) in phosophoric acid. Ann. Chim. Sci. Mat. 25, 447–455 (2000)

    Google Scholar 

  38. Kumar, S.; Sankara Narayanan, T.S.N.: Corrosion behaviour of Ti–15Mo alloy for dental implant applications. J. Dent. 36, 500–507 (2008)

    Google Scholar 

  39. Karayan, A.I.; Park, S.W.; Lee, K.M.: Corrosion behaviour of Ti–Ta–Nb alloys in simulated physiological media. Mater. Lett. 62, 1843–1845 (2008)

    Google Scholar 

  40. Kumar, S.; Sankara Narayanan, T.S.N.: J Electrochemical characterization of β-Ti alloy in Ringer’s solution for implant application. J. Alloys Compd. 479, 699–703 (2009)

    Google Scholar 

  41. Cremasco, A.; Osório, W.R.; Freire, C.M.A.; Garcia, A.; Caram, R.: Electrochemical corrosion bahavior of a Ti–35Nb alloy for medical prostheses. Electrochim. Acta 53, 4867–4874 (2008)

    Google Scholar 

  42. Boukamp, B.A.: A nonlinear least squares fit procedure for analysis of immittance data of electrochemical systems. Solid State Ionics 20, 31–44 (1986)

    Google Scholar 

  43. Devos, O.; Gabrielli, C.; Tribollet, B.: Simultaneous EIS and in situ microscope observation on a partially blocked electrode application to scale electrodeposition. Electrochemi. Acta 51, 1413–1422 (2006)

    Google Scholar 

  44. Schmidt, A.M.; Azambuja, D.S.; Martini, E.M.A.: Semiconductive properties of titanium anodic oxide films in McIlvaine buffer solution. Corros. Sci. 48, 2901–2912 (2006)

    Google Scholar 

  45. Azumi, K.; Seo, M.: Changes in electrochemical properties of the anodic oxide film formed on titanium during potential sweep. Corros. Sci. 43, 533–546(2001)

    Google Scholar 

  46. Lide, D.R.: Handbook Of Chemistry and Physics, 78RD (1997–1998)

  47. Alves, V.A.; Reis, R.Q.; Santos, I.C.B.; Souza, D.G.; Gonçalves, T.D.F.; Pereira-da-Silva, M.A.; Rossi, A.; da Silva, L.A.: In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 °C and 37 °C. Corros. Sci. 51, 2473–2482 (2009)

    Google Scholar 

  48. Pourbaix, J.: Atlas d’Equilibre Electrochimiques à 25 °C, Gauthier-Villars et Cie, Paris, (1963)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassiba Bouchemel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchemel, H., Benchettara, A. Corrosion Behavior of a New Ti–3Mo Alloy in Simulated Body Fluid for Biomedical Applications. Arab J Sci Eng 39, 139–146 (2014). https://doi.org/10.1007/s13369-013-0873-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0873-x

Keywords

Navigation