Skip to main content
Log in

Sediment Composition and Provenance of the Pab Formation, Kirthar Fold Belt, Pakistan: Signatures of Hot Spot Volcanism, Source Area Weathering, and Paleogeography on the Western Passive Margin of the Indian Plate During the Late Cretaceous

  • Research Article - Earth Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Petrographic and geochemical data collected from the Pab Formation, a late Cretaceous clastic sequence exposed in the Kirthar Range of western Pakistan, yield important clues about the influence of the varied source regimes, transportation routes and volcanic input that have influenced the composition of sediments comprising this formation. Detrital compositional modes, petrotectonic discrimination diagrams and paleocurrent data all demonstrate that the Pab sands were ultimately derived from granitic–gneissic terranes forming the Indian Craton, exposed to the E and SE of the study area, with probable supplementary contribution from the mature, ancient sedimentary cover of the craton. These data also confirm that the two contemporaneous depositional systems operating during accumulation of the Pab Formation in this area were supplied from somewhat different sources and through different routes. Sediments deposited in the Central Kirthar sub-basin were derived from the East, while coeval deposits within the Southern Kirthar sub-basin were supplied from SSE and include relatively fresh volcanic detritus that is interpreted as the product of the major Deccan Trap volcanic episode, initiated during late Maastrichtian times. Moreover, geochemical indicators demonstrate that the ultimate composition of Pab sediments has been strongly influenced by intense chemical weathering, associated with warm/humid climatic conditions in the source areas, accompanied by significant diagenetic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin Z., Li F., Cao J., Wang S., Yu J.: Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting and catchment weathering. Geomorphology 80, 147–163 (2006)

    Article  Google Scholar 

  2. Chenarai P.: Paleocurrent analyses of the Sua Khua Formation, Khorat Group, Nong Bua Lamphu region, NE Thailand. Arab. J. Sci. Eng. 37, 115–120 (2012)

    Article  Google Scholar 

  3. Dickinson, W.R.; Beard, L.S.; Brakenridge, G.R.; Erjavec, J.L.; Ferguson, R.C.; Inman, F.; Knepp, R.A.; Lindberg, F.A.; Ryberg, P.T.: Provenance of North American Phanerozoic sandstone in relation to tectonic setting. Geol. Soc. Am. Bull. 83, 222–235 (1983)

    Google Scholar 

  4. Dickinson, W.R.: Interpreting provenance relations from detrital modes of sandstone. In: Zuffa, G.G. (ed.) Provenance of Arenites. Advanced Study Institute Series 148, pp. 333–361. Reidel, Dordrecht (1985)

  5. Basilios, T.; Piper, G.P.; David J.W.; Piper, D.J.W.; Schaffer, M.: Varietal heavy mineral analysis of sediment provenance, Lower Cretaceous Scotian Basin, eastern Canada. Sediment. Geol. 237, 150–165 (2011)

    Google Scholar 

  6. Stefani C., Fellin M.G., Zattin M., Zuffa G.G., Dalmonte N.M., Zanferrari A.: Provenance and paleogeographic evolution in a multi-source foreland: the Cenozoic Venetian–Friulian Basin (NE Italy). J. Sediment. Res. 77(11), 867–887 (2007)

    Article  Google Scholar 

  7. Marenssi S.A., Net L.I., Santillana S.N.: Provenance, environmental and paleogeographic controls on sandstone compositions in an incised-valley system: the Eocene La Meseta Formation, Seymour Island, Antarctica. Sediment. Geol. 150(3), 301–321 (2002)

    Article  Google Scholar 

  8. Taj, R.J.; Mesaed, A.A.: Facies Analyses and depositional environments of Ash Shumaysi Formation (Oligocene–Miocene), Makkah Quadrangle Wadi Ash Shumaysi, west central Arabian Shield, Saudi Arabia. Arab. J. Sci. Eng. 37, 1459-1482 (2012)

    Google Scholar 

  9. McBride E.F.: Diagenesis of the Maxon Sandstone (Early Cretaceous), Marathon Region, Texas: a diagenetic quartzarenite. J. Sediment. Res. 57(1), 98–107 (1987)

    Google Scholar 

  10. Suttner L.J., Basu A., Mack G.H.: Climate and origin of quartz arenites. J. Sediment. Petrol. 51(4), 1235–1246 (1981)

    Google Scholar 

  11. Umazano, A.M.; Bellosi, E.S.; Visconti, G.; Jalfin, A.G.; Melchor, R.N.: Sedimentary record of a Late Cretaceous volcanic arc in central Patagonia: petrography, geochemistry and provenance of fluvial volcaniclastic deposits of the Bajo Barreal Formation, San Jorge Basin, Argentina. Cretaceous Res. 30, 749–766 (2009)

    Google Scholar 

  12. Maslov A.V., Krupenin M.T., Gareeve E.Z.: Lithological, lithochemical and geochemical indicators of Paleoclimate: evidence from Riphean of the Southern Urals. Lithol. Miner. Resour. 38(05), 427–446 (2003)

    Article  Google Scholar 

  13. Joo, Y.J.; Young II, L.; Zhiquiang, B.: Provenance of the Qingshuijian formation (late Carbonifereous), NE China: implication for tectonic processes in the northern margin of North China block. Sediment. Geol. 177, 97–114 (2005)

  14. Absar, N.; Raza, M.; Roy, M.; Naqvi, S.M.; Roy, A.K.: Composition and weathering conditions of Paleoproterozoic upper crust of Bundelkhand craton, Central India: records from geochemistry of clastic sediments of 1.9 Ga Gwalior Group. Precambrian Res. 168(3–4), 313–329 (2009)

    Google Scholar 

  15. Roddaz M., Debat P., Nikiema S.: Geochemistry of upper Birimian sediments (major and trace elements and Nd–Sr isotopes) and implications for weathering and tectonic setting of the late Palaeoproterozoic crust. Precambrian Res. 159, 197–211 (2007)

    Article  Google Scholar 

  16. Raza M., Bhardwaj V.R., Ahmad A.H.M., Mondal M.E.A., Khan A., Khan M.S.: Provenance and weathering history of Archaean Naharmagra quartzite of Aravalli craton, NW Indian shield: petrographic and geochemical evidence. Geochem. J. 44(5), 331–345 (2010)

    Article  Google Scholar 

  17. Taylor, S.R.; McLennan, S.M.: The Continental Crust: Its Composition and Evolution. Geol. Mag. 122, 673–674 (1985)

  18. Cox R., Lowe D.R., Cullers R.L.: The influence of sediments recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. et Cosmochim Acta 59, 2919–2940 (1995)

    Article  Google Scholar 

  19. Nesbitt H.W., Young G.M.: Earth Proterozoic climates and plate motion inferred from major element chemistry of lutites. Nature 299, 715–717 (1982)

    Article  Google Scholar 

  20. Suttner L.J., Dutta P.K.: Alluvial sandstone composition and paleoclimate, I. Framework mineralogy. J. Sediment. Petrol. 56(3), 329–345 (1986)

    Google Scholar 

  21. Nesbitt, H.W.; Young, G.M.: Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochim. et Cosmochim Acta 48, 1523–1534 (1984)

    Google Scholar 

  22. Khan, A.S.; Kelling, G.; Umar, M.; Kassi, A.M.: Depositional environments and reservoir assessment of Late Cretaceous sandstones in the south central Kirthat foldbelt. Pakistan. J. Petrol Geol. 25, 373–406 (2002)

    Google Scholar 

  23. Umar, M.; Khan, A.S.; Kelling, G.; Kassi; A.M.: Depositional environments of Campanian–Maastrichtian successionss in the Kirthar Fold Belt, southwest Pakistan: tectonic influences on late Cretaceous sedimentation across the Indian Passive margin. Sediment. geol. 237, 30–45 (2011)

    Google Scholar 

  24. Umar, M.; Friis, H.; Khan, A.S.; Kassi, A.M.; Kasi, A.K.: The effects of diagenesis on the reservoir characters in sandstones of the Late Cretaceous Pab Formation, Kirthar Fold Belt, southern Pakistan. J. Asian Earth Sci. 40, 622–635 (2011)

    Google Scholar 

  25. Bannert D., Cheema A., Ahmad A., Schaffer U.: The structural development of the Western Pakistan Fold Belt. Pakistan. Geol. J. Hannover 80, 3–60 (1992)

    Google Scholar 

  26. Kassi, A.M.; Kelling, G.; Kassi, A.K.; Umar, M.; Khan, A.S.: Contrasting Late Cretaceous–Palaeocene lithostratigraphic successions across the Bibai Thrust, western Sulaiman Thrust Belt, Pakistan: their significance in deciphering the early-collisional history of the NW Indian Plate margin. J. Asian Earth Sci. 35, 435–444 (2009)

    Google Scholar 

  27. Scotese C.R., Cahagan L.M., Larson R.L.: Plate tectonic reconstructions of the Cretaceous–Cenozoic ocean basins. Tectonophysics 155, 27–48 (1988)

    Article  Google Scholar 

  28. Gnos E., Khan M., Mehmood K., Khan A.S., Shafique N.A., Villa I.M.: Bela oceanic lithoshere assemblage and its relation to the Reunion hotspot. Terra Nova 10(2), 90–95 (1998)

    Article  Google Scholar 

  29. Anwar, A., Fatmi, A.N., Hyderi, I.H.: Revised nomenclature and stratigraphy of Ferozabad, Alozai and Mona Jhal Groups of Balochistan (Axial Belt), Pakistan. Acta Minerol. Pak. 5, 46–61 (1991)

    Google Scholar 

  30. Zuffa, G.G.: Optical analysis of arenites: influence of methodology on compositional results. In Zuffa, G.G. (ed.) Provenance of arenites. Reidel, Dordrecht, 165–189 (1985)

  31. Fralick, P.W.; Kronberg, B.I.: Geochemical discrimination of clastic sedimentary rock sources. Sediment. Geol. 113, 111–124 (1997)

    Google Scholar 

  32. Nesbitt H.W., Young G.M., McLennan S.M., Keays R.R.: Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. J. Geol. 104, 525–542 (1996)

    Article  Google Scholar 

  33. Nesbitt, H.W.; Fedo, C.M.; Young, G.M.: Quartz and feldspar stability, steady and non-steady state weathering and petrogenesis of siliciclastic sands and muds. J. Geol. 105, 173–191 (1997)

    Google Scholar 

  34. Hurowitz J.A., McLennan S.M.: Geochemistry of Cambro-Ordovician sedimentary rocks of the northeastern United States: changes in sediment sources at the onset of Taconian orogenesis. Geology 113, 571–587 (2005)

    Google Scholar 

  35. Anani C.: Sandstone petrology and provenance of the Neoproterozoic Voltaian Group in the southeastern Voltaian Basin, Ghana. Sediment. Geol. 128, 83–98 (1999)

    Article  Google Scholar 

  36. Courtillot, V.; Gallet, Y.; Rocchia, R.; Féraud, G.; Robin, E.; Hofmann, C.; Bhandari, N.; Ghevariya, Z.G.: Cosmic markers, 40Ar/39Ar dating and paleomagnetism of the KT sections in the Anjar Area of the Deccan large igneous province. Earth Planet. Sci. Lett. 182, 137–156 (2000)

    Google Scholar 

  37. Biswas, S.K.; Thomas, J.: Deccan traps and Indian Ocean volcanism, in Plummer, P.S. (ed.) First Indian Ocean Petroleum Seminar: Seychelles, pp. 187–209. United Nations Department of Technical Co-operation for Development, (1992)

  38. Jaeger J.J., Courtillot V., Tapponier P.: Paleontological view of the ages of the Deccan Traps, the Cretaceous/Tertiary boundary, and the India-Asia collision. Geology, 17, 316–319 (1989)

    Article  Google Scholar 

  39. Courtillot, V.; Besse, J.; Vandamme, D.; Montigny, R.; Jaeger, J.; Cappetta, H.: Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett. 80(3–4), 361–374 (1986)

    Google Scholar 

  40. Weaver, C.E.: Clays, Muds and Shales. In: Developments in sedimentology, vol. 44, p 819. Elsevier, Amsterdam (1989)

  41. Fedo C.M., Young G.M., Nesbitt H.W.: Paleoclimate control on the composition of the Paleoproterozoic Serpent formation, Huronian Supergroup, Canada, a greenhouse to icehouse transition. Precambrian Res. 86, 201–223 (1997)

    Article  Google Scholar 

  42. Pfeilsticker, K.: Paleo-Climate. Institut fur Umveltphysik, Universitate Heidelberg, INF 229, 69120 Heidelberg (June 17, 2006). http://www.iup.uni-heidelberg.de/institut/studium/lehre/Uphysik/uphysik2/paleo_climate.pdf

  43. Worden R.H., Morad S.: Clay Minerals in sandstones: controls on formation, distribution and evolution. Int. Assoc. Sedimentol. Spec. Publ. 34, 3–41 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Umar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umar, M., Friis, H., Khan, A.S. et al. Sediment Composition and Provenance of the Pab Formation, Kirthar Fold Belt, Pakistan: Signatures of Hot Spot Volcanism, Source Area Weathering, and Paleogeography on the Western Passive Margin of the Indian Plate During the Late Cretaceous. Arab J Sci Eng 39, 311–324 (2014). https://doi.org/10.1007/s13369-013-0850-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0850-4

Keywords

Navigation