Skip to main content
Log in

A Comparison of the Conventional and Ultrasound-Augmented Leaching of Zinc Residue Using Sulphuric Acid

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper attempts to capture the difference between the ultrasound augmented and conventional sulphuric acid leaching of zinc from zinc residue, having a Zn content of 12.31 %, along with other metallic compounds such as Fe, Pb and SiO2. The leaching temperature, sulphuric acid concentration, particle size, Liquid/solid ratio and the ultrasound power have been chosen as parameters for investigation. The shrinking core model is utilized for analyzing the rate controlling step in the leaching process. Only a maximum of 67 % of zinc could be leached using conventional process, while 80 % could be leached with the ultrasound augmentation. For both the processes the rate controlling step is identified to be the diffusion through the product layer. The reaction order with respect to the sulphuric acid concentration is found to be 1.33 and 0.94, while the activation energy being are 13.07 and 6.57 kJ/mol, for the conventional and ultrasound-augmented leaching process, respectively. The raw as well as the leached residue are characterized using XRD and SEM/EDS analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Souza, A.D.; Pina, P.S.; Leao, V.A.: Bioleaching and chemical leaching as an integrated process in the zinc industry. Miner. Eng. 20(6) 591–599 (2007)

    Article  Google Scholar 

  2. Altundoğan, H.S.; Erdem, M.; Orhan, R.; Özer, A.; Tümen, F.: Heavy metal pollution, potential of zinc leach residues discarded in Çinkur plant, J. Eng. Environ. Sci. 22, 167–177 (1998)

    Google Scholar 

  3. Matthew, O.I.: Distribution of heavy metals and natural radionuclides in selected mechanized agricultural farmlands within Ekiti State, Nigeria. Arab. J. Sci. Eng. 37(5), 1483–1490 (2012)

    Google Scholar 

  4. Jha, M.K.; Kumar, V.; Singh, R.J.: Review of the hydro-metallurgical recovery of zinc from industrial wastes. Resour. Conserv. Recycl. 33(1), 1–22 (2001)

    Google Scholar 

  5. Turan, M.D.; Altundoğan, H.S.; Tqmen, F.: Recovery of zinc and lead from zinc plant residue. Hydrometallurgy 75, 169–176 (2004)

    Google Scholar 

  6. Safarzadeh, M.S.; Moradkhani, D.; Ilkhchi, M.O.; Golshan, N.H.: Determination of the optimum conditions for the leaching of Cd-Ni residues from electrolytic zinc plant using statistical design of experiments. Sep. Purif. Technol. 58, 367–376 (2008)

    Google Scholar 

  7. Safarzadeh, M.S.; Moradkhani, D.; Ilkhchi, M.O.; Golshan, N.H.: Determination of the optimum conditions for the leaching of Cd-Ni residues from electrolytic zinc plant using statistical design of experiments. Sep. Purif. Technol. 58, 367–376 (2008)

    Google Scholar 

  8. Núñez, C.; Viñals, J.: Kinetics of leaching of zinc ferrite in aqueous hydrochloric acid solutions. Metall. Mater. Trans. B 15, 221–228 (1984)

    Google Scholar 

  9. Elgersma, F.; Kamst, G.F.; Witkamp, G.J.; van Rosmalen G.M.: Acidic dissolution of zinc ferrite. Hydrometallurgy 29, 173–189 (1992)

    Google Scholar 

  10. Elgersma, F.; Witkamp, G.J.; van Rosmalen, G.M.: Kinetics and mechanism of reductive dissolution of zinc ferrite in H2O and D2O. Hydrometallurgy 33, 165–176 (1993)

    Google Scholar 

  11. Langová, Š.; Leškoa, J.; Matýsek, D.: Selective leaching of zinc from zinc ferrite with hydrochloric acid. Hydrometallurgy 95, 179–182 (2009)

    Google Scholar 

  12. Bobeck, G.E.; Su, H.: The kinetics of dissolution of sphalerite in ferric chloride solutions. Metall. Mater. Trans. B 16, 413–424 (1985)

    Google Scholar 

  13. Perez, I.P.; Dutrizac, J.E.: The effect of the iron content of sphalerite on its rate of dissolution in ferric sulphate and ferric chloride media. Hydrometallurgy 26(2) 211–232 (1991)

    Google Scholar 

  14. Xie, F.C.; Li, H.Y.; Ma, Y.; Li, C.C.; Cai, T.T.; Huang, Z.Y.; Yuan, G.Q.: The ultrasonically assisted metals recovery treatment of printed circuit boardwaste sludge by leaching separation. J. Hazard. Mater. 170, 430–435 (2009)

    Google Scholar 

  15. Crundwell, F.K.: The influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals. Hydrometallurgy 21, 155–190 (1988)

    Google Scholar 

  16. Xia, H.Y.; Peng, J.H.; Niu, H.; Huang, M.Y.; Zhang, Z.Y.; Zhang, Z.B.; Huang, M.: Non-isothermal microwave leaching kinetics and absorption characteristics of primary titanium-rich materials. Trans. Nonferr. Metal. Soc. 20, 721–726 (2010)

    Google Scholar 

  17. Li, C.C.; Xie, F.C.; Ma, Y.; Cai, T.T.; Li, H.Y.; Huang, Z.Y.; Yuan, G.Q.: Multiple heavy metals extraction and recovery from hazardous electroplating sludge waste via ultrasonically enhanced two-stage acid leaching. J. Hazard. Mater. 178, 823–833 (2010)

    Google Scholar 

  18. Dorfling, C.; Akdogan, G.; Bradshaw, S.M.; Eksteen, J.J.: Determination of the relative leaching kinetics of Cu, Rh, Ru and Ir during the sulphuric acid pressure leaching of leach residue derived from Ni-Cu converter matte enriched in platinum group metals. Miner. Eng. 24583–588 (2011)

  19. Zhao, Z.W.; Zhang, Y.X.; Chen, X.Y.; Chen, A.L.; Huo, G.S.: Effect of mechanical activation on the leaching kinetics of pyrrhotite. Hydrometallurgy 99 105–108 (2009)

    Google Scholar 

  20. Avvaru, B.; Roy, S.B.; Ladola, Y.; Chowdhury, S.; Hareendran, K.N.; Pandit, A.B.: Sono-chemical leaching of uranium. Chem. Eng. Process. 47, 2107–2113 (2008)

    Google Scholar 

  21. Wattoo, M.H.S.; Tirmizi, S.A.; Quddos, A., Khan, M.B.; Wattoo, F.H.; Wattoo, A.; Ghangro, A.B.: Ghangro Aerosol-Assisted chemical vapor deposition of thin films of Cadmium Sulfide and Zinc Sulfide prepared from Bis(dibutyldithiocarbamato)metal complexes. Arab. J. Sci. Eng. 36(4), 565–571 (2011)

    Google Scholar 

  22. Swamy, K.M.; Narayana, K.L.: Intensification of leaching process by dual-frequency ultrasound. Ultrason. Sonochem. 8, 341–346 (2001)

    Google Scholar 

  23. Öncel, M.S.;  Ince, M.; Bayramolu, M.: Leaching of silver from solid waste using ultrasound augmented thiourea method. Ultrason. Sonochem. 12, 237–242 (2005)

    Google Scholar 

  24. Şayan, E.; Bayramoğlu, M.: Statistical modeling and optimization of ultrasound augmented sulphuric acid leaching of TiO2 from red mud. Hydrometallurgy 71, 397–401 (2004)

    Google Scholar 

  25. Bese, A.V.: Effect of ultrasound on the dissolution of copper from copper converter slag by acid leaching. Ultrason. Sonochem. 14, 790–796 (2007)

    Google Scholar 

  26. Derradji, E.F.; Benmeziane, F.; Maoui, A.; Bousnoubra, H.; Kherici, N.: Evaluation of salinity, organic and metal pollution in groundwater of the Mafragh watershed, NE Algeria. Arab. J. Sci. Eng. 36(4), 573–580 (2011)

    Google Scholar 

  27. Filippou, D.; Demopoulos, G.P.: Steady-state modeling of zinc-ferrite hot-acid leaching. Metall. Mater. Trans. B 28, 701–711 (1997)

    Google Scholar 

  28. He, S.M.; Wang, J.K.; Yan, J.F.: Pressure leaching of synthetic zinc silicate in sulphuric acid medium. Hydrometallurgy 108 171–176 (2011)

    Google Scholar 

  29. Zhang, Y.J.; Li, X.H.; Pan, L.P.; Liang, X.Y.; Li, X.P.: Studies on the kinetics of zinc and indium extraction from indium-bearing zinc ferrite. Hydrometallurgy 100, 172–176 (2010)

    Google Scholar 

  30. Yadawa, P.K.: Computational study of ultrasonic parameters of hexagonal close-packed transition metals Fe, Co, and Ni. Arab. J. Sci. Eng. 37(1), 255–262 (2012)

  31. Souza, A.D.; Pina, P.S.; Leão, V.A.; Silva, C.A.; Siqueira, P.F.: The leaching kinetics of a zinc sulphide concentrate in acid ferric sulphate. Hydrometallurgy 89, 72–81 (2007)

    Google Scholar 

  32. Safarzadeh, M.S.; Moradkhani D.; Ilkhchi, M.O.: Kinetics of sulphuric acid leaching of cadmium from Cd-Ni zinc plant residues. J. Hazard. Mater. 163, 880–890 (2009)

    Google Scholar 

  33. Abdel-Aal, E.A.: Kinetics of sulphuric acid leaching of low-grade zinc silicate ore. Hydrometallurgy 55, 247–254 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-hui Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Yang, Dj., Srinivasakannan, C. et al. A Comparison of the Conventional and Ultrasound-Augmented Leaching of Zinc Residue Using Sulphuric Acid. Arab J Sci Eng 39, 163–173 (2014). https://doi.org/10.1007/s13369-013-0835-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0835-3

Keywords

Navigation