Skip to main content
Log in

Analytical Model of Multi-junction Solar Cell

  • Research Article - Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Multi-junction solar cells (MJSCs) are a current trend in the field of solar cells and form the backbone of concentrated photovoltaic systems. They are an attractive option because of their high efficiency, better power production and cost effectiveness. The aim of this paper is to present a general mathematical model of MJSC, suitable for computer simulation. This model investigates cell characterization curves including current density and power curves as a function of voltage for different concentration levels and number of junctions. The effect of varying material properties of junctions and tunneling layers is also analyzed. Two different types of MJSCs have been tested on the model, including InGaP–GaAs dual-junction solar cell with tunneling layer of InGaP and InGaP–GaAs–Ge triple-junction solar cell with tunneling layers of GaAs. Paper also presents the simulation results which are in agreement with practical conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Green M.: Photovoltaic principles. Phys. E Low Dimens. Syst. Nanostructures 14(1), 11–17 (2002)

    Article  Google Scholar 

  2. Yamaguchi M., Takamoto T., Araki K., Ekins-Daukes N.: Multi-junction iii–v solar cells: current status and future potential. Solar Energy 79(1), 78–85 (2005)

    Article  Google Scholar 

  3. Yamaguchi M.: Super-high-efficiency mjscs. Prog. Photovolt. Res. Appl. 13, 125 (2005)

    Article  Google Scholar 

  4. Dimroth F., Kurtz S.: High-efficiency multijunction solar cells. MRS Bull. 32(03), 230–235 (2007)

    Article  Google Scholar 

  5. Burnett, B.: The basic physics and design of iii–v multijunction solar cells. National Renewable Energy Laboratory, http://www.nrel.gov/ncpv/pdfs/11_20_dga_basics_9-13.pdf, summer (2002)

  6. Martí, A.; Luque, A.: Next Generation Photovoltaics: High Efficiency Through Full Spectrum Utilization. Taylor & Francis, London (2004)

  7. Sherif, R.; et al.: Concentrator triple-junction solar cells and receivers in point focus and dense array modules. Proceedings 21nd EU PVSEC-2006 (2006)

  8. King, R.; Karam, N.; Ermer, J.; Haddad, N.; Colter, P.; Isshiki, T.; Yoon, H.; Cotal, H.; Joslin, D.; Krut, D.; et al.: Next-generation, high-efficiency iii-v multijunction solar cells. In: Photovoltaic Specialists Conference, 2000. Conference Record of the Twenty-Eighth IEEE, pp. 998–1001. IEEE (2000)

  9. González, M.; Chan, N.; Ekins-Daukes, N.; Adams, J.; Stavrinou, P.; Vurgaftman, I.; Meyer, J.; Abell, J.; Walters, R.; Cress, C.; et al.: Modeling and analysis of multijunction solar cells. In: Proceedings of SPIE, vol. 7933, p. 79330R (2011)

  10. Guter, W.; Bett, A.: I-v characterization of devices consisting of solar cells and tunnel diodes. In: Conference Record of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, vol. 1, pp. 749–752. IEEE (2006)

  11. King R., Law D., Edmondson K., Fetzer C., Kinsey G., Yoon H., Sherif R., Karam N.: 40percent efficient metamorphic gainp/gainas/ge multijunction solar cells. Appl. Phys. Lett. 90(18), 183516 (2007)

    Article  Google Scholar 

  12. Guter, W.; Schöne, J.; Philipps, S.; Steiner, M.; Siefer, G.; Wekkeli, A.; Welser, E.; Oliva, E.; Bett, A.; Dimroth, F.: Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight. Appl. Phys. Lett. 94, 223,504 (2009)

    Google Scholar 

  13. Spectrolab solar cell breaks 40percent efficiency barrier (2006). http://www.renewableenergyworld.com/rea/news/article/2006/12/solar-cell-breaks-the-40-efficiency-barrier-46765

  14. Solar junction achieves world record solar cell conversion efficiency of 44percent (2011). http://www.solarserver.com/solar-magazine/solar-news/current/2012/kw42/solar-junction-achieves-world-record-solar-cell-conversion-efficiency-of-44.html

  15. Esaki L.: New phenomenon in narrow germanium pn junctions. Phys. Rev. 109(2), 603 (1958)

    Article  Google Scholar 

  16. Nikhil M, K.; Stephen, B.; Jennifer, H.; Michael, B.S.: Modelling of an esaki tunnel diode in a circuit simulator. Act. Passiv. Electron. Compon. 2011 (2011). http://dx.doi.org/10.1155/2011/830182

  17. King, R.; Fetzer, C.; Colter, P.; Edmondson, K.; Ermer, J.; Cotal, H.; Yoon, H.; Stavrides, A.; Kinsey, G.; Krut, D.; et al.: High-efficiency space and terrestrial multijunction solar cells through bandgap control in cell structures. In: Conference Record of the 29th IEEE Photovoltaic Specialists Conference, 2002.; pp. 776–781. IEEE (2002)

  18. W. Guter F. Dimroth, M.M.; Bett, A.W.: Tunnel diodes for iiiv multi-junction solar cells. Photovoltaic Solar Energy Conf.; Barcelona, Spain p. 515–518 (2005)

  19. Guter W., Bett A.: I–v characterization of tunnel diodes and multijunction solar cells. IEEE Trans. Elect. Dev. 53(9), 2216–2222 (2006)

    Article  Google Scholar 

  20. Hermle M., Letay G., Philipps S., Bett A.: Numerical simulation of tunnel diodes for multi-junction solar cells. Prog. Photovolt. Res. Appl. 16(5), 409–418 (2008)

    Article  Google Scholar 

  21. Jung D., Parker C., Ramdani J., Bedair S.: Algaas/gainp heterojunction tunnel diode for cascade solar cell application. J. Appl. Phys. 74(3), 2090–2093 (1993)

    Article  Google Scholar 

  22. Takamoto T., Ikeda E., Kurita H., Ohmori M.: Over 30percent efficient ingap-gaas tandem solar cells. Appl. Phys. Lett. 70, 381 (1997)

    Article  Google Scholar 

  23. Ahmed, S.; Melloch, M.; Harmon, E.; McInturff, D.; Woodall, J.: Use of nonstoichiometry to form gaas tunnel junctions. Appl. Phys. Lett. 71, 3667 (1997)

    Google Scholar 

  24. Chiang P., Timmons M., Hutchby J.: Patterned germanium tunnel junctions for multijunction monolithic cascade solar cells. Solar Cells 21(1–4), 241–252 (1987)

    Article  Google Scholar 

  25. Gibson G., Meservey R.: Properties of amorphous germanium tunnel barriers. J. Appl. Phys. 58(4), 1584–1596 (1985)

    Article  Google Scholar 

  26. Gow, J.; Manning, C.: Development of a photovoltaic array model for use in power-electronics simulation studies. In: IEEE Proceedings—Electric Power Applications, vol. 146, pp. 193–200. IET (1999)

  27. Wasynezuk O.: Dynamic behavior of a class of photovoltaic power systems. IEEE Trans. Power Apparatus Syst. 9, 3031–3037 (1983)

    Article  Google Scholar 

  28. Phang J., Chan D., Phillips J.: Accurate analytical method for the extraction of solar cell model parameters. Electron. Lett. 20(10), 406–408 (1984)

    Article  Google Scholar 

  29. Tsai, H.; Tu, C.; Su, Y.: Development of generalized photovoltaic model using matlab/simulink. In: Proceedings of the World Congress on Engineering and Computer Science, pp. 846–851. Citeseer (2008)

  30. Bube, R.; Bube, R.: Photovoltaic Materials, vol. 1. Imperial College Press, London (1998)

  31. Streetman, B.; Banerjee, S.: Solid State Electronic Devices, vol. 2. Prentice-Hall, New Jersey (1995)

  32. Bube, R.; Bube, R.: Photovoltaic Materials, vol. 1. Imperial College Press, London (1998)

  33. Sagol, B.; Szabo, N.; Doscher, H.; Seidel, U.; Hohn, C.; Schwarzburg, K.; Hannappel, T.: Lifetime and performance of ingaasp and ingaas absorbers for low bandgap tandem solar cells. In: 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009, pp. 001090–001093. IEEE (2009)

  34. Sterzer, F.: Stability of tunnel-diode osciallators. In: 16th Annual Symposium on Frequency Control, pp. 391–404. IEEE (1962)

  35. Oscillator diode gallium arsenide. http://www.datasheetarchive.com/Custom+Components-datasheet.html

  36. Oscillator diode germanium. http://www.datasheetarchive.com/Custom+Components-datasheet.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Babar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babar, M., Rizvi, A.A., Al-Ammar, E.A. et al. Analytical Model of Multi-junction Solar Cell. Arab J Sci Eng 39, 547–555 (2014). https://doi.org/10.1007/s13369-013-0821-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0821-9

Keywords

Navigation