Skip to main content
Log in

Tunneling Through Finite Quantum Dot Superlattices

  • Research Article - Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

From first principles, we arrive at a generalized Tsu–Esaki formula for current per unit-cell in the case of one-dimensional, time-independent, open-system charge-transport along the growth direction of stacked layers of self-assembled quantum dots with perfect, transverse Bravais-lattice layout. We rigorously derive, using symmetry considerations, great simplifications to the final formula and identify significant computational benefits that would make modeling and simulation for such a complex problem not only feasible but also efficient. We allow an arbitrary sequence of quantum dot layers with or without intervening spacer and wetting layers. While the symmetry does suggest that final expressions for transmission coefficients should have simple form, the split, open boundary conditions as well as lack of longitudinal symmetry cast doubt on this. Employing a multiple sequential scattering view of processes within the heterostructure layers and using a limiting argument, we prove that the device behaves as a diffraction grating which distributes incident-carrier wavefunction-phases into specific patterns of reflected and transmitted phases which forms the basis for our conclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wasilewski, Z.R.; Fafard, S.; McCaffrey, J.P.: Size and shape engineering of vertically stacked self-assembled quantum dots. J. Crystal Growth 201, 202, 1131–1135 (1999)

    Google Scholar 

  2. Leonard, D.; Krishnamurthy, M.; Reaves, C.M.; Denbaars, S.P.; Petroff, P.M.: Direct formation of quantum-sized dots from uniform coherent islands of InGaAs on GaAs surfaces. Appl. Phys. Lett. 63, 3203 (1993)

    Google Scholar 

  3. Moison, J.M.; Houzay, F.; Barthe, F.; Leprince, L.; André, E.; Vatel, O.: Self-organized growth of regular nanometer-scale InAs dots on GaAs. Appl. Phys. Lett. 64, 196 (1994)

    Google Scholar 

  4. Xu, M.C.; Temko, Y.; Suzuki, T.; Jacobi, K.: Shape transition of self-assembled inas quantum dots on gaas(114)a. Phys. Rev. B (Condensed Matter and Materials Physics) 71(7), 075314 (2005)

    Google Scholar 

  5. Joyce, P.B.; Krzyzewski, T.J.; Bell, G.R.; Jones, T.S.; Malik, S.; Childs, D.; Murray.R.: Effect of growth rate on the size, composition, and optical properties of InAs/GaAs quantum dots grown by molecular-beam epitaxy. Phys. Rev. B 62(16), 10891–10895 (2000)

    Google Scholar 

  6. Lee H., Lowe-Webb R., Yang W., Sercel P.C.: Determination of the shape of self-organized inas/gaas quantum dots by reflection high energy electron diffraction. Appl. Phys. Lett. 72(7), 812–814 (1998)

    Article  Google Scholar 

  7. Zhang K., Falta J., Schmidt Th., Heyn Ch., Materlik G., Hansen W.: Distribution and shape of self-assembled InAs quantum dots grown on GaAs (001). Pure Appl. Chem. 72(1–2), 199–207 (2000)

    Article  Google Scholar 

  8. Lehmann, S.Y.; Roshko, A.; Mirin, R.P.; Bonevich, J.E.: Investigation of shape of ingaas/gaas quantum dots. Mater. Res. Soc. Sympos. Proc. 737, E13.40.1–E13.40.6 (2003)

  9. Leonard D., Pond K., Petroff P.M.: Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 50(16), 11687–11692 (1994)

    Article  Google Scholar 

  10. Saito H., Nishi K., Sugou S.: Shape transition of InAs quantum dots by growth at high temperature. Appl. Phys. Lett. 74(9), 1224 (1999)

    Article  Google Scholar 

  11. Eberl, K.; Lipinski, M.O.; Manz, Y.M.; Winter, W.; Jin-Phillip, N.Y.; Schmidt, O.G.: Self-assembling quantum dots for optoelectronic devices on si and gaas. Phys. E 9, 164–174 (2001)

    Google Scholar 

  12. Kurtz E., Shen J., Schmidt M., Grün M., Hong S.K., Litvinov D., Gerthsen D., Oka T., Yao T., Klingshirn C.: Formation and properties of self-organized II–VI quantum islands. Thin Solid Films 367(1–2), 68–74 (2000)

    Article  Google Scholar 

  13. Springholz G., Holy V., Pinczolits M., Bauer G.: Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and a tunable lattice constant. Science 282, 734–737 (1998)

    Article  Google Scholar 

  14. Okada, Y.; Akahane, K.; Iuchi, Y.; Kawabe, M.: Probing the properties of self-organized ingaas quantum dots on gaas (311)b and (001) by conductive atomic force microscope tip. Mater. Res. Soc. Sympos. Proc. 642, J.4.7.1–J.4.7.6 (2001)

  15. Bortoleto J.R.R., Zelcovit J.G., Gutierrez H.R., Bettini J., Cotta M.A.: Designing spatial correlation of quantum dots: towards self-assembled three-dimensional structures. Nanotechnology 19(1), 015601 (2008)

    Article  Google Scholar 

  16. Ledentsov, N.N.; Shchukin, V.A.; Grundmann, M.; Kirstaedter, N.; öhrer, J.B; Schmidt, O.; Bimberg, D.; Ustinov, V.M.; Yu. Egorov, A.; Zhukov, A.E.; Kop’ev, P.S.; Zaitsev, S.V.; Yu. Gordeev, N.; Alferov, Zh. I.; Borovkov, A.I.; Kosogov, A.O.; Ruvimov, S.S.; Werner, P.; ösele, U.G; Heydenreich, J.: Direct formation of vertically coupled quantum dots in stranski-krastanow growth. Phys. Rev. B 54(12), 8743–8750 (1996)

    Google Scholar 

  17. Schmidt, O.G.; Denker, U.; Eberl, K.; Kienzle, O.; Ernst, F.; Haug, R.J.: Resonant tunneling diodes made up of stacked self-assembled ge/si islands. Appl. Phys. Lett. 77, 4341 (2000)

    Google Scholar 

  18. Sun J.P., Haddad G.I., Mazumder P., Schulman J.N.: Resonant tunneling diodes: models and properties. Proc. IEEE 86(4), 641–660 (1998)

    Article  Google Scholar 

  19. Datta S.: Electronic Transport in Mesoscopic Systems. Cambridge Studies in Semiconductor Physics and Microelectronic Engineering. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  20. Bimberg D., Grundmann M., Ledentsov N.N.: Quantum Dot Heterostructures. Wiley, New York (1999)

    Google Scholar 

  21. Tsu R., Esaki L.: Tunneling in a finite superlattice. Appl. Phys. Lett. 22(11), 562–564 (1973)

    Article  Google Scholar 

  22. Streetman, B.G.; Banerjee, S.: Solid State Electronics, 6th edn. Prentice Hall, Englewood Cliffs (2000)

  23. BenDaniel D.J., Duke C.B.: Space-charge effects on electron tunneling. Phys. Rev. 152(2), 683–692 (1966)

    Article  Google Scholar 

  24. Coon D.D., Liu H.C.: Tunneling currents and two-body effects in quantum well and superlattice structures. Appl. Phys. Lett. 47(2), 172–174 (1985)

    Article  Google Scholar 

  25. Bandara K.M.S.V., Coon D.D.: Derivation and correction of the tsu-esaki tunneling current formula. J. Appl. Phys. 66(2), 693–696 (1989)

    Article  Google Scholar 

  26. Merzbacher E.: Quantum Mechanics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  27. Ashcroft, N.W.; David Mermin, N.: Solid State Physics. Brooks Cole (1976)

  28. Blanes S., Casas F., Oteo J.A., Ros J.: Magnus and fer expansions for matrix differential equations: the convergence problem. J. Phys. A Math. Gen., 31(1), 259–268 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  29. Hall, B.C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate Texts in Mathematics. Springer, New York (2004)

  30. Bastard, G.; Furdyna, J.K.; Mycielski, J.: Landau levels and cyclotron resonance in graded mixed semiconductors. Phys. Rev. B 12(10), 4356–4359 (1975)

    Google Scholar 

  31. Ko D.Y.Y., Inkson J.C.: Matrix method for tunneling in heterostructures: resonant tunneling in multilayer systems. Phys. Rev. B 38(14), 9945–9951 (1988)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Mazumder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajagopalan, M., Mazumder, P. Tunneling Through Finite Quantum Dot Superlattices. Arab J Sci Eng 39, 1863–1879 (2014). https://doi.org/10.1007/s13369-013-0806-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0806-8

Keywords

Navigation