Skip to main content
Log in

MHD Mixed Convection Stagnation-Point Flow Over a Stretching Vertical Plate in Porous Medium Filled with a Nanofluid in the Presence of Thermal Radiation

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid and in the presence of thermal radiation. The stretching velocity and the ambient fluid velocity are assumed to vary linearly with the distance from the stagnation point. By means of similarity transformation, the governing partial differential equations are reduced into ordinary differential equations. The similarity equations were solved for three types of nanoparticles, namely copper, alumina and titania with water as the base fluid, to investigate the effect of the nanoparticle volume fraction parameter φ, the constant magnetic/porous medium parameter Λ, the mixed convection parameter λ, the Prandtl number Pr and the radiation parameter R d on the flow and heat transfer characteristics. The skin-friction coefficient and Nusselt number as well as the velocity and temperature profiles for some values of the governing parameters are presented graphically and discussed. Effects of the solid volume fraction on both of assisting and opposing flows on the flow and heat transfer characteristics are thoroughly examined. It is observed that, for all three nonoparticles, the magnitude of the skin friction coefficient and local Nusselt number increases with the nanoparticle volume fraction φ for both cases of buoyant assisting and opposing flows. In addition, the velocity of fluid increases in case of assisting flow by decreasing Λ and Pr but the opposite trend is noted in the opposing flows. A similar effect on the velocity is observed when λ and R d increases and the temperature increase by increasing Λ and R d in both cases of buoyant assisting and opposing flows. The highest values of the skin friction coefficient and the local Nusselt number was obtained for the Cu nanoparticles compared to Al2O3 and TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hiemenz K.: Die Grenzschicht an einem in den gleichformingen Flussigkeitsstrom einge-tauchten graden Kreiszylinder. Dinglers Polytech. J. 326, 321–324 (1911)

    Google Scholar 

  2. Homann F.: Der Einfluss grosser Zahigkeit bei der Stromung um den Zylinder und um die Kugel. Z. Angew. Math. Mech. 16, 153–164 (1936)

    Article  MATH  Google Scholar 

  3. Mahapatra T.R., Gupta A.S.: Heat transfer in stagnation-point towards a stretching sheet. Heat Mass Transf. 38, 517–521 (2002)

    Article  Google Scholar 

  4. Nazar R., Amin N., Filip D., Pop I.: Unsteady boundary layer flow in the region of the stagnation point on a stretching sheet. Int. J. Eng. Sci. 42, 1241–1253 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Nield, D.A.; Bejan, A.: Convection in Porous Media, 3rd edn. Springer, New York (2006)

  6. Ingham, D.B.; Pop, I. (eds.): Transport Phenomena in Porous Media, vol. II 2002, Pergamon, Oxford (1998)

  7. Ingham, D.B.; Pop, I. (eds.): Transport Phenomena in Porous Media. vol. III, Elsevier, Oxford (2005)

  8. Vafai, K. (ed.): Handbook of Porous Media. Marcel Dekker, New York (2000)

  9. Vafai, K.: Handbook of Porous Media. 2nd edn. Taylor and Francis, New York (2005)

  10. Pop, I.; Ingham, D.B.: Convective Heat Transfer: Mathematical and Computational Modelling of Viscous Fluids and Porous Media. Pergamon, Oxford (2001)

  11. Ingham, D.B.; Bejan, A.; Mamut, E.; Pop, I. (eds.): Emerging Technologies and Techniques in Porous Media. Kluwer, Dordrecht (2004)

  12. Bejan, A.; Dincer, I.; Lorente, S.; Miguel, A.F.; Reis, A.H.: Porous and Complex Flow Structures in Modern Technologies. Springer, New York (2004)

  13. Kang H., Kim S.H., Oh J.M.: Estimation of thermal conductivity of nanofluid using experimental effective particle volume. Exp. Heat Transf. 19(3), 181–191 (2006)

    Article  Google Scholar 

  14. Velagapudi V., Konijeti R.K., Aduru C.S.K.: Empirical correlation to predict thermophysical and heat transfer characteristics of nanofluids. Therm. Sci. 12(2), 27–37 (2008)

    Article  Google Scholar 

  15. Turgut A. et al.: Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids. Int. J. Thermophys. 30(4), 1213–1226 (2009)

    Article  Google Scholar 

  16. Rudyak V.Y., Belkin A.A., Tomilina E.A.: On the thermal conductivity of nanofluids. Tech. Phys. Lett. 36(7), 660–662 (2010)

    Article  Google Scholar 

  17. Murugesan C., Sivan S.: Limits for thermal conductivity of nanofluids. Therm. Sci. 14(1), 65–71 (2010)

    Article  Google Scholar 

  18. Nayak A.K., Singh R.K., Kulkarni P.P.: Measurement of volumetric thermal expansion coefficient of various nanofluids. Tech. Phys. Lett. 36(8), 696–698 (2010)

    Article  Google Scholar 

  19. Bachok N., Ishak A., Nazar R., Pop I.: Flow and heat transfer at a general three-dimensional stagnation point in a nanofluid. Physica B 405, 4914–4918 (2010)

    Article  Google Scholar 

  20. Bachok N., Ishak A., Pop I.: Stagnation-point flow over a stretching/shrinking sheet in a nanofluid. Nanoscale Res. Lett. 6, 623–631 (2011)

    Article  Google Scholar 

  21. Arifin N., Nazar R., Pop I.: Viscous flow due to a permeable stretching/shrinking sheet in a nanofluid. Sains Malaysiana 40(12), 1359–1367 (2011)

    Google Scholar 

  22. Ahmad S., Pop I.: Mixed convection boundary layer flow from a vertical flat plate embedded in a porous medium filled with nanofluids. Int. Comm. Heat Mass Transf. 37, 987–991 (2010)

    Article  Google Scholar 

  23. Nield D.A., Kuznetsov A.V.: The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid. Int. J. Heat Mass Transf. 52, 5792–5795 (2009)

    Article  MATH  Google Scholar 

  24. Kuznetsov A.V., Nield D.A.: Natural convective boundary-layer flow of a nanofluid past a vertical plate. Int. J. Therm. Sci. 49, 243–247 (2010)

    Article  Google Scholar 

  25. Gbadeyan J.A., Olanrewaju M.A., Olanrewaju P.O.: Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition in the presence of magnetic field and thermal radiation. Aust. J. Basic Appl. Sci. 5(9), 1323–1334 (2011)

    Google Scholar 

  26. Olanrewaju P.O., Olanrewaju M.A., Adesanya A.O.: Boundary layer flow of nanofluids over a moving surface in a flowing fluid in the presence of radiation. Int. J. Appl. Sci. Technol. 2(1), 122–131 (2012)

    Google Scholar 

  27. Akbarinia A., Behzadmehr A.: Numerical study of laminar mixed convection of a nanofluid in horizontal curved tubes. Appl. Therm. Eng. 27, 1327–1337 (2007)

    Article  Google Scholar 

  28. Mirmasoumi S., Behzadmehr A.: Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model. Appl. Therm. Eng. 28, 717–727 (2008)

    Article  Google Scholar 

  29. Abu-Nada E., Chamkha A.J.: Mixed convection flow in a lid-driven square enclosure filled with a nanofluid. Eur. J. Mech. B/Fluids 29(6), 472–482 (2010)

    Article  MATH  Google Scholar 

  30. Oztop H.F., Abu-Nada E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Article  Google Scholar 

  31. Tiwari R.J., Das M.K.: Heat transfer augmentation in two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50, 2002–2018 (2007)

    Article  MATH  Google Scholar 

  32. Hayat T., Abbas Z., Pop I., Asghar S.: Effects of radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching sheet in a porous medium. Int. J. Heat Mass Transf. 53, 466–474 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Dinarvand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yazdi, M.E., Moradi, A. & Dinarvand, S. MHD Mixed Convection Stagnation-Point Flow Over a Stretching Vertical Plate in Porous Medium Filled with a Nanofluid in the Presence of Thermal Radiation. Arab J Sci Eng 39, 2251–2261 (2014). https://doi.org/10.1007/s13369-013-0792-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0792-x

Keywords

Navigation