Skip to main content
Log in

Lattice Boltzmann Simulation of Natural Convection in a Square Cavity with a Linearly Heated Wall Using Nanofluid

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, Lattice Boltzmann simulation of natural convection in a square cavity with a linearly heated wall which is filled by nanofluid has been investigated. The fluid in the cavity is a water-based nanofluid containing various nanoparticles such as copper (Cu), cupric oxide (CuO) or alumina (Al2O3). This study has been conducted for Rayleigh numbers of 103 to 105, while solid volume fraction (φ)varied from 0 to 16 %. The effects of nanopartcles are displayed on streamlines, isotherms counters, local and average Nusselt number. Copper nanoparticle enhances heat transfer more than other nanoparticles, while the lowest heat transfer is demonstrated by alumina (Al2O3) nanoparticles. In addition, the increment of Rayleigh number causes the effect of the nanoparticles to increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

c :

Lattice speed

c i :

Discrete particle speeds

c p :

Specific heat at constant pressure

F :

External forces

f :

Density distribution functions

f eq :

Equilibrium density distribution functions

g :

Internal energy distribution functions

g eq :

Equilibrium internal energy distribution functions

G :

Gravity

k :

Thermal conductivity

L :

Enclosure height

M :

Lattice numbers

Ma :

Mach number

Nu :

Nusselt number

Pr :

Prandtl number

R :

Constant of the gases

Ra :

Rayleigh number

T :

Temperature

x, y :

Cartesian coordinates

ω i :

Weighted factor for flow (D2Q9)

β :

Thermal expansion coefficient

φ :

Volume fraction

τ c :

Relaxation time for temperature

τ v :

Relaxation time for flow

ρ :

Density

μ :

Dynamic viscosity

ϑ :

Kinematic viscosity

Δx :

Lattice spacing

Δt :

Time increment

\({\omega^{ '} _{i}}\) :

Weighted factor for temperature (D2Q4)

avg:

Average

C:

Cold

f:

Fluid

H:

Hot

nf:

Nanofluid

s:

Solid

*:

Normalized

References

  1. Chen S., Doolen G.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  2. Alexander, F.J.; Chen, S.; Sterling, J.D.: Lattice Boltzmann thermohydrodynamics. Phys. Rev. E 47, 2249–2252 (1993)

    Google Scholar 

  3. Qian, Y.: Simulating thermohydrodynamics with lattice BGK models. J. Sci. Comput. 8, 231–241 (1993)

    Google Scholar 

  4. Chen, Y.; Ohashi, H.; Akiyama, M.: Thermal lattice Bhatnagar–Gross–Krook model without nonlinear deviations in macrodynamic equations. Phys. Rev. E 50, 2776 –2783 (1994)

    Google Scholar 

  5. Bartoloni, A.; Battista, C.: LBE simulations of Rayleigh–Bernard convection on the APE100 parallel processor. Int. J. Modul. Phys. C 4, 993–1006 (1993)

    Google Scholar 

  6. Eggles, G.J.M.; Somers, J.A.: Numerical simulation of free convective flow using the lattice-Boltzmann scheme. Int. J. Heat Fluid Flow 16, 357–364 (1995)

    Google Scholar 

  7. Shan, X.: Simulation of Rayleigh–Bernard convection using a lattice-Boltzmann method. Phys. Rev. E 55, 2780–2788 (1997)

    Google Scholar 

  8. Filippova, O.; Hanel, D.: A novel BGK approach for low Mach number combustion. J. Comput. Phys. 158, 139–160 (2000)

    Google Scholar 

  9. Mei, R.; Shyy, W.; Yu, D.; Luo, L.S.: Lattice Boltzmann method for 3-D flows with curved boundary. J. Comput. Phys. 161, 680–699 (2000)

    Google Scholar 

  10. Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Clarendon Press, Oxford, London (2001)

  11. Mohamad, A.A.: Applied Lattice Boltzmann Method for Transport Phenomena, Momentum, Heat and Mass Transfer. Sure, Calgary (2007)

  12. Aghajani, D.M.; Farhadi, M.; Sedighi, K.: Effect of discrete heater at the vertical wall of the cavity over the heat transfer and entropy generation using LBM. Thermal Sci. 14, 469–477 (2010)

    Google Scholar 

  13. Mohamad, A.A.; Kuzmin, A.: A critical evaluation of force term in lattice Boltzmann method, natural convection problem. Int. J. Heat Mass Transf. 53, 990–996 (2010)

    Google Scholar 

  14. Mohamad, A.A.; Bennacer, R.; El-Ganaoui, M.: Double dispersion, natural convection in an open end cavity simulation via Lattice Boltzmann Method. Int. J. Thermal Sci. 49, 1944–1953 (2010)

    Google Scholar 

  15. Mussa, M.A.; Abdullah, S.; Nor Azwadi, C.S.; Muhamad, N.: Simulation of natural convection heat transfer in an enclosure by the lattice-Boltzmann method. Comp. Fluids 44, 162–168 (2011)

    Google Scholar 

  16. Sajjadi, H.; Gorji, M.; Kefayati, GH.R.; Ganji, D.D.: Lattice Boltzmann simulation of MHD mixed convection in two sided lid-driven square cavity. Heat Transf. Asian Res. 41(2), 179–195 (2012)

  17. Sajjadi, H.; Gorji, M.; Hosseinizadeh, S.F.; Kefayati, GH.R.; Ganji, D.D.: Numerical analysis of turbulent natural convection in square cavity using large-Eddy simulation in Lattice Boltzmann method. Iran J. Sci. Tech. Trans. B/Eng. 35, 133–142 (2011)

  18. Sarris, I.E.; Lekakis, I.; Vlachos, N.S.: Natural convection in a 2D enclosure with sinusoidal upper wall temperature. Numer. Heat Transf. Part A 42, 513–530 (2002)

    Google Scholar 

  19. Roy, S.; Basak, T.: Finite element analysis of natural convection flows in a square cavity with nonuniformly heated wall(s). Int. J. Eng. Sci. 43, 668–680 (2005)

    Google Scholar 

  20. Sathiyamoorthy, M.; Basak, T.; Roy, S.; Pop, I.: Steady natural convection flows in a square cavity with linearly heated side wall(s). Int. J. Heat Mass Transf. 50, 766–775 (2007)

    Google Scholar 

  21. Choi, U.S.: Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng. Div. 231, 99–105 (1995)

    Google Scholar 

  22. Lee, S.; Choi, S.U.S.; Li, S.; Eastman, J.A.: Measuring thermal conductivity of fluids containing oxide nanoparticles. ASME J. Heat Trans. 121, 280–289 (1999)

    Google Scholar 

  23. Eastman, J.A.; Choi, S.U.S.; Yu, W.; Thompson, L.J.: Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles. Appl. Phys. Lett. 78, 718–720 (2001)

    Google Scholar 

  24. Das, S.K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement for nanofluids. ASME J. Heat Transf. 125, 567–574 (2003)

    Google Scholar 

  25. Jang, S.P.; Choi, S.U.S.: The role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl. Phys. Lett. 84, 4316–4318 (2004)

    Google Scholar 

  26. Das, S.K.; Putra, N.; Roetzel, W.: Pool boiling characteristics of nanofluids. Int. J. Heat Mass Transf. 46, 851–862 (2003)

    Google Scholar 

  27. Yang, Y.; Zhang, Z.G.; Grulke, E.A.; Anderson, W.B.; Wu, G.: Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow. Int. J. Heat Mass Transf. 48, 1107–1116 (2005)

    Google Scholar 

  28. Xuan, Y.; Li, Q.: Investigation on convective heat transfer and flow features of nanofluids. ASME Trans. J. Heat Transf. 125, 151–155 (2003)

    Google Scholar 

  29. Wen, D.; Ding, Y.: Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions. Int. J. Heat Mass Transf. 47, 5181–5188 (2004)

    Google Scholar 

  30. Heris, S.Z.; Etemad, S.G.; Esfahany, M.N.: Experimental investigation of oxide nanofluids laminar flow convective heat transfer. Int. Commun. Heat Mass 33, 529–535 (2006)

    Google Scholar 

  31. Khanafer, K.; Vafai, K.; Lightstone, M.: Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int. J. Heat Mass Transf. 46, 3639–3653 (2003)

    Google Scholar 

  32. Putra, N.; Roetzel, W.; Das, S.K.: Natural convection of nano-fluids. Int. J. Heat Mass Transf. 39, 775–784 (2003)

    Google Scholar 

  33. Hwang, K.S.; Lee, J.-H.; Jang, S.P.: Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity. Int. J. Heat Mass Transf. 50, 4003–4010 (2007)

    Google Scholar 

  34. Santra, A.K.; Sen, S.; Chakraborty, N.: Study of heat transfer augmentation in a differentially heated square cavity using copper–water nanofluid. Int. J. Thermal Sci. 47, 1113–1122 (2008)

    Google Scholar 

  35. Oztop, H.F.; Abu-Nada, E.: Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. Int. J. Heat Fluid Flow 29, 1326–1336 (2008)

    Google Scholar 

  36. Abu-Nada, E.; Masoud, Z.; Hijazi, A.: Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int. Commun. Heat Mass Transf. 35(5), 657–665 (2008)

    Google Scholar 

  37. Jahanshahi, M.; Hosseinizadeh, S.F.; Alipanah, M.; Dehghani, A.; Vakilinejad, G.R.: Numerical simulation of free convection based on experimental measured conductivity in a square cavity using water/SiO2 nanofluid. Int. Commun. Heat Mass Transf. 37, 687–694 (2010)

    Google Scholar 

  38. Moraveji, K.M.; Darabi, M.; Haddad, S.M.H.; Davarnejad, R.: Modeling of convective heat transfer of a nanofluid in the developing region of tube flow with computational fluid dynamics. Int. Commun. Heat Mass Transf. 38, 1291–1295 (2011)

    Google Scholar 

  39. Mahmoodi, M.; Hashemi, S.M.: Numerical study of natural convection of a nanofluid in C-shaped enclosures. Int. J. Thermal Sci. 55, 76–89 (2012)

    Google Scholar 

  40. Mahmoodi, M.: Numerical simulation of free convection of a nanofluid in L-shaped cavities, Int. J. Thermal Sci. 50, 1731–1740 (2011)

    Google Scholar 

  41. Arefmanesh, A.; Amini, M.; Mahmoodi, M.; Najafi, M.: Buoyancy-driven heat transfer analysis in two-square duct annuli filled with a nanofluid. European J. Mech. B/Fluids 33, 95–104 (2012)

    Google Scholar 

  42. Mahmoodi, M.: Numerical simulation of free convection of nanofluid in a square cavity with an inside heater. Int. J. Thermal Sci. 50, 2161–2175 (2011)

    Google Scholar 

  43. Kefayati, GH.R.; Hosseinizadeh, S.F.; Gorji, M.; Sajjadi, H.: Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid, Int. J. Thermal Sci. 52, 91–101 (2012)

    Google Scholar 

  44. Kefayati, GH.R.; Hosseinizadeh, S.F.; Gorji, M.; Sajjadi, H.: Lattice Boltzmann simulation of natural convection in tall enclosures using water/ SiO2 nanofluid. Int. Commun. Heat Mass Transf. 38, 798–80 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GH. R. Kefayati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kefayati, G.R. Lattice Boltzmann Simulation of Natural Convection in a Square Cavity with a Linearly Heated Wall Using Nanofluid. Arab J Sci Eng 39, 2143–2156 (2014). https://doi.org/10.1007/s13369-013-0748-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0748-1

Keywords

Navigation