Skip to main content

Advertisement

Log in

Transmission Congestion Management Through LMP Difference Minimization: A Renewable Energy Placement Case Study

  • Research Article - Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

New generation units based on renewable energy resources (RER) are being installed in power systems more frequently. As one of the important tasks of system planners and/or independent system operators, they have to propose appropriate sites and sizes for new RER installation. In present work, a novel approach for determining the site and size of new RER is proposed for relieving congestion in transmission lines. This method is based on minimizing the differences among locational marginal prices considering N − 1 security criteria. For the case of wind farms (WF), the appropriate size and location of WF are determined considering the probabilistic nature of wind speed; the probability of wind generation output power is utilized in WF placement and sizing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a i , b i , c i :

Cost function coefficients of generator i

c :

Scale factor

k :

Shape factor

n :

Number of buses

N g :

Number of generators

N L :

Number of lines

p d :

Load demand (MW)

p f :

Line flow (MW)

\({p_{\rm f}^{\rm min}, p_{\rm f}^{\rm max}}\) :

Limits on line flows (MW)

p g :

Active power generation (MW)

\({p_{\rm g}^{\rm min}, p_{\rm g}^{\rm max}}\) :

Limits on generator’s active power (MW)

p w :

Wind turbine output power (MW)

p wr :

Rated power of wind turbine (MW)

v :

Wind speed (m/s)

v in :

Cut-in wind speed (m/s)

v out :

Cut-out wind speed (m/s)

v r :

Rated wind speed (m/s)

η, γ :

Lagrange multipliers for inequality constraints

θ :

Voltage angle (rad.)

λ, α :

Lagrange multipliers for equality constraints

References

  1. Ahmadi, H.; Mohseni, S.; Shayegani Akmal, A.A.: Electromagnetic fields near transmission lines—problems and solutions. Iran. J. Environ. Health Sci. Eng. 7(2), 181–188 (2010)

    Google Scholar 

  2. Kumar A., Srivastava S.C., Singh S.N.: Congestion management in competitive power market: a bibliographical survey. Electr. Power Syst. Res. 76, 153–164 (2005)

    Article  Google Scholar 

  3. Hazra, J.; Sinha, A.K.: Congestion management using multiobjective particle swarm optimization. IEEE Trans. Power Syst. 22(4), 1726–1734 (2007)

    Google Scholar 

  4. Visalakshi, S.; Baskar, S.: Multiobjective decentralized congestion management using modified NSGA-II. Arab. J. Sci. Eng. 36(5), 827–840 (2011)

    Google Scholar 

  5. Conejo, A.J.; Milano, F.; García-Bertrand, R.: Congestion management ensuring voltage stability. IEEE Trans. Power Syst. 21(1), 357–364 (2006)

    Google Scholar 

  6. Shao, W.; Vittal, V.: Corrective switching algorithm for relieving overloads and voltage violations. IEEE Trans. Power Syst. 20(4), 1877–1885 (2005)

    Google Scholar 

  7. Granelli, G.; Montagna, M.; Zanellini, F.; Bresesti, P.; Vailati, R.; Innorta, M.: Optimal network reconfiguration for congestion management by deterministic and genetic algorithms. Elect. Power Syst. Res. 76, 549–556 (2006)

    Google Scholar 

  8. Hedman, K.W.; O’Neill, R.P.; Fisher, E.B.; Oren, S.S.: Optimal transmission switching with contingency analysis. IEEE Trans. Power Syst. 24(3), 1577–1586 (2009)

    Google Scholar 

  9. Khodaei, A.; Shahidehpour, M.: Transmission switching in security-constrained unit commitment. IEEE Trans. Power Syst. 25(4), 1937–1945 (2010)

    Google Scholar 

  10. Kaymaz, P.; Valenzuela, J.; Park, C.S.: Transmission congestion and competition on power generation expansion. IEEE Trans. Power Syst. 22(1), 156–163 (2007)

    Google Scholar 

  11. Liu, J.; Salama, M.M.A.; Mansour, R.R.: Identify the impact of distributed resources on congestion management. IEEE Trans. Power Del. 20(3), 1998–2005 (2005)

    Google Scholar 

  12. Gautam, D.; Nadarajah, M.: Influence of distributed generation on congestion and LMP in competitive electricity market. Int. J. Electr. Power Eng. 3(4), 228–235 (2010)

    Google Scholar 

  13. Afkousi-Paqaleh, M.; Abbaspour-Tehrani Fard, A.; Rashidinejad, M.: Distributed generation placement for congestion management considering economic and financial issues. Electr. Eng. (Springer). 92, 193–201 (2010)

    Google Scholar 

  14. Ahmadi, H.; Ghasemi, H.: Maximum penetration level of wind generation considering power system security limits. IET Gen. Trans. Dist. (2012 Under Publication)

  15. Koutroumpezis, G.N.; Safigianni, A.S.: Optimum allocation of the maximum possible distributed generation penetration in a distribution network. Electr. Power Syst. Res. 80, 1421–1427 (2010)

    Google Scholar 

  16. Ayres, H.M.; Freitas, W.; De Almeida, M.C.; Da Silva, L.C.P.: Method for determining the maximum allowable penetration level of distributed generation without steady-state voltage violations. IET Gener. Transm. Distrib. 4(4), 495–508 (2010)

    Google Scholar 

  17. Shahidehpour, M.; Yamin, H.; Zuyi, L.: Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Wiley, New York (2002)

  18. Boyd, S.; Vandenberghe, L.: Convex Optimization. Cambridge University Press, London (2004)

  19. Conejo, A.J.; Canizares, C.; Gomez-Exposito, A.: Electric energy systems: analysis and operation. CRC Press/Taylor & Francis Group, Boca Raton (2009)

  20. Patel, M.R.: Wind and Solar Power Systems. CRC Press, Boca Raton (1999)

  21. Ahmadi, H.; Ghasemi, H.: Probabilistic optimal power flow incorporating wind power using point estimate methods. In: EEEIC, Rome, Italy, 2011, pp. 1–5

  22. Johnson, N.L.; Kotz, S.; Balakishman, N.: Continuous Univariate Distributions, 2nd edn. Wiley, New York (1995)

  23. Akinci, T.C.; Nogay, H.S.: Wind speed correlation between neighboring measuring stations. Arab. J. Sci. Eng. 37(4), 1007–1019 (2012)

    Google Scholar 

  24. Stevens, M.J.; Smulders, P.T.: The estimation of the parameters of the Weibull wind speed distribution for wind energy utilization purposes. Wind Eng. 3(2), 132–145 (1979)

    Google Scholar 

  25. Ramirez, P.; Carta, J.A.: Influence of the data sampling interval in the estimation of the parameter of the Weibull wind speed probability distribution: a case study. Energy Conv. Manag. 46, 2419–2438 (2005)

    Google Scholar 

  26. Liu, X.; Xu, W.: Economic load dispatch constrained by wind power availability: a here-and-now approach. IEEE Trans. Sust. Energy 1(1), 2–9 (2010)

    Google Scholar 

  27. Hetzer J., Yu D.C., Bhattarai K.: An economic dispatch model incorporating wind power. IEEE Trans. Energy Convers. 23(2), 603–611 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Ahmadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmadi, H., Lesani, H. Transmission Congestion Management Through LMP Difference Minimization: A Renewable Energy Placement Case Study. Arab J Sci Eng 39, 1963–1969 (2014). https://doi.org/10.1007/s13369-013-0744-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0744-5

Keywords

Navigation