Skip to main content

Advertisement

Log in

Thermodynamic Analysis

  • Review Article - Special Issue - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This review mainly summarizes some of the developments on the various aspects of thermodynamic analysis within the past 15 years. Therefore, it is limited and will omit some valuable work unintentionally, mainly because of the vast number of publications in the field. The thermodynamic analyses mainly aim at assessing the thermodynamic imperfections and suggest possible ways of improving these imperfections. In this review, thermodynamic analyses have been summarized under these methodologies: (i) second law analysis, (ii) exergy analysis, (iii) pinch analysis, (iv) equipartition principle, (v) Gibbs free energy minimization, (vi) thermoeconomics, (vii) exergoeconomics, and (viii) extended exergy analysis. The exergy analysis, which is the most popular methodology, is discussed for the following systems: (1) power cycle applications, (2) biomass and coal gasification, (3) solar energy applications, (4) refrigeration, (5) waste heat utilization, (6) distillation column systems, and (7) heat and fluid flow in micro channels. Besides that, statistical and non equilibrium thermodynamics are discussed briefly. One of the main conclusions of this review is that thermodynamic analysis has been confined mainly to heat and fluid flow systems. Thermodynamic analysis with its unifying power may be more useful and effective if it is successfully expanded toward diverse and multi-scale processes in physical, chemical, and biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a 1, a 2 :

Parameters in Eq. (6.9)

A :

Affinity, J mol−1; availability, kJ kg−1

\({\breve{A}}\) :

Affinity, J mol−1

Be :

Bejan number

c p :

Heat capacity, J kg−1 K−1

C i :

Concentration of specie i, mole m−3

de :

Exchange through the boundary

di :

Internal change

Da:

Damköhler number, dimensionless

D i :

Diffusion coefficient of species i, m2 s−1

D S,e :

Effective diffusion coefficient for the substrate S, m2 s−1

D D,e :

Coupling coefficient related to the Dufour effect, J m2 mol−1 s−1

D T,e :

Coupling coefficient related to the thermal diffusion (Soret effect), mol m−1 s−1 K−1

e :

Energy source per unit volume (W/m3),

ex :

Specific exergy, kW kg−1

ex f :

Exergy flow, kW kg−1

Ex :

Exergy, kW

E :

Activation energy of the chemical reaction, J mol−1

F :

Faraday constant

H :

Enthalpy, kJ/kg

ΔH r :

Reaction enthalpy, J mol−1

I :

Current, A

g :

Gravitation acceleration, m s−2

G :

Gibbs free energy

J :

Diffusive mass flux (flow), mol m−2 s−1

J q :

Conduction heat flux (flow), W m−2

J r :

Volumetric reaction rate, mol m−3 s−1

K :

Thermal conductivity

k e :

Effective thermal conductivity, W m−1 K−1

k B :

Boltzmann constant

k i :

Rate constant for chemical reaction i

K :

Equilibrium constant

L ik :

Phenomenological coefficients

L qr :

Element of coupling coefficient between chemical reaction and heat flow, mol K/(m2 s)

L ir :

Element of coupling coefficient between chemical reaction and mass flow, mol2 K/(J m2 s)

Le:

Modified Lewis number, dimensionless

L ik :

Phenomenological coefficients

L qr :

Coupling coefficient between chemical reaction and heatflow, mol K m−2 s−1

L Sr :

Coupling coefficient between chemical reaction and massflow, mol2 K J−1 m−2 s−1

m :

Mass, kg

n :

Number of moles, number of components

N :

Amount, mole, kg

N r :

Number of independent reactions

Q :

Partition function

p i :

Probability

P :

Pressure, kPa; total entropy production, kJ K−1

P*:

Saturation pressure

q :

Conduction heat flow, W/m2

q C :

Condenser duty, W

q R :

Reboiler duty, W

r :

Spacial vector, m

R :

Gas constant, kJ mol−1 K−1

S :

Entropy, kJ K−1

\({\dot{S}_{\rm prod}}\) :

Rate of entropy production

t :

Time, s−1

T :

Temperature, K

T o :

Reference temperature

u :

Internal energy

v:

Velocity m s−1

V :

Total volume, m3

y :

gas phase composition

W :

Work

x :

Thermodynamic force ratio

X :

Thermodynamic force

z :

Elevation, dimensionless distance; charge

Z :

Phenomenological stoichiometry; partition function, configuration integral

α :

Number of atoms

γ :

Arrhenius group, dimensionless

\({\varepsilon}\) :

Cross coefficient related to Soret effect,dimensionless

η :

Energy conversion efficiency

θ :

Dimensionless concentration defined

κ :

Cross coefficient dimensionless

μ :

Chemical potential, J/mol

ρ :

Density, kg/m3

σ :

Entropy production; cross coefficient, dimensionless

τ :

Dimensionless time

τ q :

Phase-lag in the heat flux

τ T :

Phase-lag in the temperature gradient

Θ:

Viscous dissipation function, s−2

\({\varphi}\) :

Dimensionless temperature

ω :

Cross coefficient related to Dufour effect, dimensionless

θ :

Dimensionless composition

λ :

Relation in Eq. (7.1)

ν :

Stoichiometric coefficient

\({\psi}\) :

Electric potential, V

τ :

Dimensionless time

ω :

Dimensionless parameter related to Dufour effect

b:

Backward

D:

Dufour

e:

Effective

ext:

External

eq:

Equilibrium

f:

Forward

r:

Reaction

S:

Soret

Reference

  1. Sciubba E: Extended exergy accounting applied to energy recovery from waste: the concept of total recycling. Energy 28, 1315–1334 (2003)

    Article  Google Scholar 

  2. Sciubba E: Exergo-economics: thermodynamic foundation for a more rational resource use. Int. J. Energy Res. 29, 613–636 (2005)

    Article  Google Scholar 

  3. Szargut, J.; Morris, D.R.; Steward, F.R.: Exergy Analysis of Thermal, Chemical and Metallurgical Processes. Hemisphere Publishing Corporation, New York (1988)

  4. Tsatsaronis G., Winhold M: Exergoeconomic analysis and evaluation of energy-conversion plants. 1. A new general methodology. Energy 10, 69–80 (1985)

    Article  Google Scholar 

  5. Tsatsaronis G., Park M.-Ho: On avoidable and unavoidable exergy destructions and investment costs in thermal systems. Energy Convers. Manage. 43, 1259–1270 (2002)

    Article  Google Scholar 

  6. Dinçer, I.; Rosen, M.A.: Exergy: Energy, Environment, and Sustainable Development. Elsevier, Oxford (2007)

  7. Dinçer, I.; Zamfirescu, C.: Sustainable Energy Systems and Applications, Springer, Oxford (2011)

  8. Dinçer, I.; Midilli, A.; Hepbasli, A.; Karakoc, T.H. (eds.): Global Warming: Engineering Solutions. Springer, Oxford (2009)

  9. Tsatsaronis G: Recent developments in exergy analysis and exergoeconomics. Int. J. Exergy 5, 489–499 (2008)

    Article  Google Scholar 

  10. Bejan, A.; Tsatsaronis, G.; Moran, M.: Thermal Design & Optimization. Wiley, New York (1996)

  11. Valero A., Serra L., Uche J: Fundamentals of exergy cost accounting and thermoeconomics. Part II: applications. J. Energy Resour. Technol. 128, 9–15 (2006)

    Article  Google Scholar 

  12. Rivero R., Rendon C., Gallegos S: Exergy and exergoeconomic analysis of a crude oil combined distillation unit. Energy 29, 1909–1927 (2004)

    Article  Google Scholar 

  13. Rosen M.A: Assessing energy technologies and environmental impacts with the principles of thermodynamics. Appl. Energy 72, 427–441 (2002)

    Article  Google Scholar 

  14. Wall G: Conditions and tools in the design of energy conversion and management systems of a sustainable society. Energy Convers. Manage. 43, 1235–1248 (2002)

    Article  Google Scholar 

  15. Morosuk, T.; Tsatsaronis, G.: Advanced exergy analysis for chemically reacting systems-application to a simple open gas-turbine system. Int. J. Thermodyn. 12, 105–111 (2009)

    Google Scholar 

  16. Rosen , Rosen : Energy sustainability: a pragmatic approach and illustrations. Sustainability 1, 55–80 (2009)

    Article  Google Scholar 

  17. Rivero, R.: Application of the exergy concept in the petroleum refining and petrochemical industry. Energy Convers. Manage. 43, 1199 (2002)

    Google Scholar 

  18. Rivero, R.: Exergy simulation and optimization of adiabatic and diabatic binary distillation. Energy 26, 561 (2001)

    Google Scholar 

  19. De Koeijer, G.M.; Kjelstrup, S.; Salamon, P.; Siragusa, G.; Schaller, M.; Offmann, K.H.: Comparison of entropy production rate minimization methods for binary diabatic distillation. Ind. Eng. Chem. Res. 41, 5826 (2003)

    Google Scholar 

  20. De Koijer, G.; Rivero, R.: Entropy production and exergy loss in experimental distillation columns. Chem. Eng. Sci. 58, 1587 (2003)

    Google Scholar 

  21. Ayres R.U: Eco-thermodynamics: economics and the second law. Ecol. Econ. 26, 180 (1998)

    Article  Google Scholar 

  22. Kelly S., Tsatsaronis G., Morosuk T: Advanced exergetic analysis: approaches for splitting the exergy destruction into endogenous and exogenous parts. Energy 34, 384–391 (2009)

    Article  Google Scholar 

  23. Petrakopoulou, F.; Tsatsaronis, G.; Morosuk, T.; Carassai, A.: Advanced exergoeconomic analysis applied to a complex energy conversion system. J. Eng. Gas Turbines Power 134, 031801-8 (2012)

    Google Scholar 

  24. Morosuk T., Tsatsaronis G: A new approach to the exergy analysis of absorption refrigeration machines. Energy 33, 890–907 (2008)

    Article  Google Scholar 

  25. Demirel, Y.: Nonequilibrium Thermodynamics: Transport and Rate Processes in Physical, Chemical and Biological Systems, 2nd edn. Elsevier, Amsterdam (2007)

  26. Hammond G.P: Engineering sustainability: thermodynamics, energy systems, and the environment. Int. J. Energy Res. 28, 613–639 (2004)

    Article  Google Scholar 

  27. Bejan, A.: Entropy Generation Minimization, 2nd edn. Elsevier, New York (1996)

  28. Demirel Y., Sandler S.I: Nonequilibrium thermodynamics in engineering and science. J. Phys. Chem. B 108, 31–43 (2004)

    Article  Google Scholar 

  29. Demirel Y., Sandler S.I: Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport. Int. J. Heat Mass Transfer 44, 2439–2451 (2001)

    Article  MATH  Google Scholar 

  30. Tzou, D.Y.: Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor & Francis, Washington (1997)

  31. Tzou D.Y: Experimental support for the lagging response in heat propagation. AIAA J. Thermophys. Heat Transfer 9, 686–693 (1995)

    Article  Google Scholar 

  32. Zhou J., Chen K.K., Zhang Y: Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39, 286–293 (2009)

    Article  Google Scholar 

  33. Al-Nimr M.A., Naji M., Arpaci V: Non-equilibrium entropy production under the effect of dual-phase lag heat conduction model. ASME J. Heat Transfer 122, 217–223 (2000)

    Article  Google Scholar 

  34. Demirel Y: Thermodynamically coupled heat and mass flows in a reaction-transport system with external resistances. Int. J Heat Mass Transfer 52, 2018–2025 (2009)

    Article  MATH  Google Scholar 

  35. Demirel Y: Thermodynamically coupled transport in simple catalytic reactions. Int. J. Chem. Reactor Eng. 6, 1–22 (2008)

    Article  Google Scholar 

  36. Demirel Y: Modeling of thermodynamically coupled reaction-transport systems. Chem. Eng. J. 139, 106–117 (2008)

    Article  Google Scholar 

  37. Demirel Y: Non-isothermal reaction diffusion systems with thermodynamically coupled heat and mass transfer. Chem. Eng. Sci. 61, 3379–3385 (2006)

    Article  Google Scholar 

  38. Moran, M.J.; Shapiro, H.N.: Fundamentals of Engineering Thermodynamics, 4th edn. Wiley, New York (2000)

  39. Demirel Y., Kahraman R: Entropy generation in a rectangular packed duct with wall heat flux. Int. J. Heat Mass Transfer 42, 2337–2344 (1999)

    Article  MATH  Google Scholar 

  40. Demirel, Y.; Al-Ali, H.H.: Thermodynamic analysis of convective heat transfer in a packed duct with asymmetrical wall temperatures. Int. J. Heat Mass Transfer 40, 1145–1153 (1997)

    Google Scholar 

  41. Demirel Y., Al-Ali H.H., Abu-Al-Saud B.A: Entropy generation of convection heat transfer in an asymmetrically heated packed duct. Int. Commun. Heat Mass Transfer 24, 381–390 (1997)

    Article  Google Scholar 

  42. Sahin A.Z., Ayar T., Yilbas B.S: First and second law analyses of laser cutting process in relation to the end product quality. Int. J. Energy Res. 32, 689–697 (2008)

    Article  Google Scholar 

  43. Yilbas B.S., Bin Mansoor S: Entropy generation in laser heating in relation to machining. Heat Mass Transfer 44, 331–341 (2008)

    Article  Google Scholar 

  44. Sahin A.Z: Entropy generation in turbulent liquid flow through a smooth duct subjected to constant wall temperature. Int. J. Heat Mass Transfer 43, 1469–1478 (2000)

    Article  MATH  Google Scholar 

  45. Yilbas B.S., Sahin A.Z., Chatwin C. et al.: Laser cutting of Kevlar laminates: first and second law analysis. J. Mech. Sci. Technol. 25, 855–862 (2011)

    Article  Google Scholar 

  46. Alquaity A.B.S., Al-Dini S.A., Yilbas B.S: Entropy generation rate in microchannel flow with phase change particles. J. Thermophys. Heat Transfer 26, 134–140 (2012)

    Article  Google Scholar 

  47. Bilgen S., Kaygusuz K: Second law (exergy) analysis of cogeneration system. Energy Sources Part A 30, 1267–1280 (2008)

    Article  Google Scholar 

  48. Naterer, G.F.; Camberos, J.A.: Entropy Based Design and Analysis of Fluids Engineering Systems. CRC Press, New York (2008)

  49. Demirel Y: Irreversibility profiles in a circular Couette flow of temperature dependent materials. Int. Commun. Heat Mass Transfer 26, 75–83 (1999)

    Article  Google Scholar 

  50. Demirel Y.Y: Thermodynamic analysis of thermomechanical coupling in Couette flow. Int. J. Heat Mass Transfer 43, 4205–4212 (2000)

    Article  MATH  Google Scholar 

  51. Demirel Y: Irreversibility Distribution for a pure convection case of the Smith-Hutton problem. Int. Commun. Heat Mass Transfer 25, 671–679 (1998)

    Article  Google Scholar 

  52. Demirel Y., Kahraman R: Thermodynamic analysis of convective heat transfer in an annular packed bed. Int. J. Heat Fluid Flow 21, 442–448 (2000)

    Article  Google Scholar 

  53. Demirel Y: Thermodynamic optimization of convective heat transfer in a packed duct. Energy 20, 959–967 (1995)

    Article  Google Scholar 

  54. Godoy, E.; Benz, S.J.; Scenna, N.J.: A strategy for economic optimization of combined cycle gas turbine power plants by taking advantage of useful thermodynamic relationships. Appl. Thermal Eng. 31, 852–871 (2011)

    Google Scholar 

  55. Srinivas, T.; Gupta, A.V.S.S.K.S.; Reddy, B.V.: Generalized thermodynamic analysis of steam power cycles with ‘n’ number of feedwater heaters. Int. J. Thermodyn. 10, 177–185 (2007)

    Google Scholar 

  56. Gao L., Jin H., Liu Z., Zheng D: Exergy analysis of coal-based polygeneration system for power and chemical production. Energy 29, 2359–2371 (2004)

    Article  Google Scholar 

  57. Eskin N., Gungor A., Ozdemir K: Thermodynamic analysis of a FBCC steam power plant. Energy Convers. Manage. 50, 2428–2438 (2009)

    Article  Google Scholar 

  58. Dincer I., Al-Muslim H: Thermodynamic analysis of reheat cycle steam power plants. Int. J. Energy Res. 25, 727–739 (2001)

    Article  Google Scholar 

  59. Abu-Nada E., Al-Hinti I., Akash B., Al-Sarki A: Thermodynamic analysis of spark-ignition engine using a gas mixture model for the working fluid. Int. J. Energy Res. 31, 1031–1046 (2007)

    Article  Google Scholar 

  60. Shyani B.G., Caton J.A: A thermodynamic analysis of the use of exhaust gas recirculation in spark ignition engines including the second law of thermodynamics. Proc. IMechE Part D: J. Automobile Eng. 223, 131–149 (2009)

    Article  Google Scholar 

  61. Liu H., Xie M., Wu D: Thermodynamic analysis of the heat regenerative cycle in porous medium engine. Energy Convers. Manage. 50, 297–303 (2009)

    Article  Google Scholar 

  62. Mitrovic D., Zivkovic D., Lakovic M.S: Energy and exergy analysis of a 348.5 MW steam power plant. Energy Sources 32, 1016–1027 (2010)

    Article  Google Scholar 

  63. Ozturk, H.K.; Atalay, O.; Yilanci, A.: Energy and exergy analysis of Kizildere geothermal power plant, Turkey. Energy Sources A 28, 1415–1424 (2006)

    Article  Google Scholar 

  64. Cihan, A.; Hacιhafιzoglu, O.; Kahveci, K.: Energy–exergy analysis and modernization suggestions for a combined-cycle power plant. Int. J. Energy Res. 30, 115–126 (2006)

    Google Scholar 

  65. Sanjay Y., Singh O., Prasad B.N: Energy and exergy analysis of steam cooled reheat gas-steam combined cycle. Appl. Thermal Eng. 27, 2779–2790 (2007)

    Article  Google Scholar 

  66. Sengupta S., Datta A., Duttagupta S: Exergy analysis of a coal-based 210 MW thermal power plant. Int. J. Energy Res. 31, 14–28 (2007)

    Article  Google Scholar 

  67. Khaliq A: Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. Int. J. Refrigeration 32, 534–545 (2009)

    Article  Google Scholar 

  68. Cziesla F., Tsatsaronis G., Gao Z: Avoidable thermodynamic inefficiencies and costs in an externally fired combined cycle power plant. Energy 31, 1472–1489 (2006)

    Article  Google Scholar 

  69. Ehsan A., Yilmazoglu M.Z: Design and exergy analysis of a thermal power plant using different types of Turkish lignite. Int. J. Thermodyn. 14, 125–133 (2011)

    Google Scholar 

  70. Sanjay Y., Singh O., Prasad B.N: Energy and exergy analysis of steam cooled reheat gas-stem combined cycle. Appl. Thermal Eng. 27, 2779–2790 (2007)

    Article  Google Scholar 

  71. Cihan A., Hacihafizoglu O., Kahveci K: Energy-exergy analysis and modernization suggestions for a combined-cycle power plant. Int. J. Energy Res. 30, 115–126 (2006)

    Article  Google Scholar 

  72. Sengupta S., Datta A., Duttagupta S: Exergy analysis of a coal-based 210 MW thermal power plant. Int. J. Energy Res. 31, 14–28 (2007)

    Article  Google Scholar 

  73. Khaliq A., Choudhary K., Dincer I: Exergy analysis of a gas turbine trigeneration system using the Brayton refrigeration cycle for inlet air cooling. Proc. IMechE 224(Part A. J. Power Energy 224), 449–461 (2010)

    Google Scholar 

  74. Granovskii, M.; Dincer, I.; Rosen, M.A.: Exergy analysis of a gas turbine cycle with steam generation for methane conversion within solid oxide fuel cells. J. Fuel Cell Sci. Technol. 5, 031005-1-9 (2008)

    Google Scholar 

  75. Duan L., He B., Yang Y: Parameter optimization study on SOFC-MGT hybrid power system. Int. J. Energy Res. 35, 721–732 (2011)

    Article  Google Scholar 

  76. Huang Y.-C., Hung B.-I., Chen C.-K: An ecological exergy analysis for an irreversible Brayton engine with an external heat source. Proc. Inst. Mech. Eng. 214, 413–421 (2000)

    Google Scholar 

  77. Reddy V.S., Kaushik S.C., Tyagi S.K., Panwar N.L: An approach to analyze energy and exergy analysis of thermal power plants: a review. Smart Grid Renew. Energy 1, 143–152 (2010)

    Article  Google Scholar 

  78. Toonssen R., Woudstra N., Verkooijen A.H.M: Exergy analysis of hydrogen production plants based on biomass gasification. Int. J. Hydrogen Energy 33, 4074–4082 (2008)

    Article  Google Scholar 

  79. Bang-Moller C., Rokni M., Elmegaard B: Exergy analysis and optimization of a biomass gasification, solid oxide fuel cell and micro gas turbine hybrid system. Energy 36, 4740–4752 (2011)

    Article  Google Scholar 

  80. Shudo Y., Ohkubo T., Hideshima Y., Akiyama T: Exergy analysis of the demonstration plant for co-production of hydrogen and benzene from biogas. Int. J. Hydrogen Energy 34, 4500–4508 (2009)

    Article  Google Scholar 

  81. Kempegowda, R.; Assabumrungrat, S.; Laosiripojana, N.: Thermodynamic analysis for gasification of Thailand rice husk with air, steam, and mixed air/steam for hydrogen-rich gas production. Int. J. Chem. React. Eng. 8, A158 (2010)

  82. De, S.; Biswal, S.K.: Thermodynamic analysis of a coal gasification and split Rankine combined cogeneration plant. Part 2: energy analysis. Proc. IMechE 219, 169–178 (2005)

    Google Scholar 

  83. De, S.; Biswal, S.K.: Thermodynamic analysis of a coal gasification and split Rankine combined cogeneration plant. Part 2: exergy analysis. Proc. IMechE 219, 179–185 (2005)

    Google Scholar 

  84. Giuffrida A., Romano M.C., Lozza G: Thermodynamic analysis of air-blown gasification for IGCC applications. Appl. Energy 88, 3949–3958 (2011)

    Article  Google Scholar 

  85. Li, Y.; Wang, Y.; Zhang, X.; Mi, Z.: Thermodynamic analysis of autothermal steam and CO2 reforming of methane. Int. J. Hydrogen Energy 33, 2507–2514 (2008)

    Google Scholar 

  86. Xie, J.; Su, D.; Yin, X.; Wu, C.; Zhu, J.: Thermodynamic analysis of aqueous phase reforming of three model compounds in bio-oil for hydrogen production. Int. J. Hydrogen Energy 36, 15561–15572 (2011)

    Google Scholar 

  87. Yenumala S.R., Maity S.K: Reforming of vegetable oil for production of hydrogen: a thermodynamic analysis. Int. J. Hydrogen Energy 36, 11666–11675 (2011)

    Article  Google Scholar 

  88. Mingyi L., Bo Y., Jingming X., Jing C: Thermodynamic analysis of the efficiency of high-temperature steam electrolysis system for hydrogen production. J. Power Sour. 177, 493–499 (2008)

    Article  Google Scholar 

  89. Ortiz F.J.G., Ollero P., Serrera A., Galera S: An exergy and exergy analysis of the supercritical water reforming of glycerol for power production. Int. J. Hydrogen Energy 37, 209–226 (2012)

    Article  Google Scholar 

  90. Sohel M.I., Jack M.W: Thermodynamic analysis of lignocellulosic biofuel production via a biochemical process: guiding technology selection and research focus. Bioresource Technol. 102, 2617–2622 (2011)

    Article  Google Scholar 

  91. Wang H., Wang X., Li M., Li S., Wang S., Ma X: Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. Int. J. Hydrogen Energy 34, 5683–5690 (2009)

    Article  Google Scholar 

  92. Liu S., Zhang K., Fang L., Li Y: Thermodynamic analysis of hydrogen production from oxidative steam reforming of ethanol. Energy Fuels 22, 1365–1370 (2008)

    Article  Google Scholar 

  93. Sun, Y.; Ritchie1, T.; Hla, S.S.; McEvoy, S.; Stein, W.; Edwards, J.H.: Thermodynamic analysis of mixed and dry reforming of methane for solar thermal applications. J. Nat. Gas Chem. 20, 568–576 (2011)

    Google Scholar 

  94. Caliskan, H.; Hepbasli, A.; Dincer, I.: Exergy analysis and sustainability assessment of a solar-ground based heat pump with thermal energy storage. J. Solar Energy Eng. ASME 133, 011005-1-7 (2011)

    Google Scholar 

  95. Xiaowu W., Ben H.: Exergy analysis of domestic-scale solar water heaters. Renewable Sust. Energy Rev. 9, 638–645 (2005)

    Article  Google Scholar 

  96. Jegadheeswaran, S.; Pohekar, S.D. : Exergy analysis of particle dispersed latent heat thermal storage system for solar water heaters. J. Renew. Sustain. Energy B, 023105-1-17 (2010)

    Google Scholar 

  97. Li X., Zhang X.: Component exergy analysis of solar powered transcritical CO2 Rankine cycle system. J. Thermal Sci. 20, 195–200 (2011)

    Article  Google Scholar 

  98. Nayak S., Tiwari G.N.: Theoretical performance assessment of an integrated photovoltaic and earth air heat exchanger greenhouse using energy and exergy analysis methods. Energy Build. 41, 888–896 (2009)

    Article  Google Scholar 

  99. Hepbasli, A.; Utlu Z. : Analyzing the energy utilization efficiency of renewable energy resources. Part 2: exergy analysis method. Energy Sources B 1, 355–366 (2006)

    Google Scholar 

  100. Baghernejad A., Yaghoubi M: Exergy analysis of an integrated solar combined cycle system. Renew. Energy 35, 2157–2164 (2010)

    Article  Google Scholar 

  101. Ozturk H.H., Demirel Y.: Exergy-based performance analysis of packed bed solar air heaters. Int. J. Energy Res. 28, 423–432 (2004)

    Article  Google Scholar 

  102. Demirel Y., Ozturk H.H.: Thermoeconomics of seasonal heat storage system. Int. J. Energy Res. 30, 1001–1012 (2006)

    Article  Google Scholar 

  103. Demirel, Y.: Heat storage by phase changing materials and thermoeconomics. In: Paksoy, H.O. (ed.) Thermal Energy Storage for Sustainable EnergyConsumption, pp. 133–151. Springer, London (2007)

  104. Bascetincelik A., Ozturk H.H., Paksoy H.O., Demirel Y.: Energetic and exergetic efficiency of latent heat storage system for greenhouse heating. Renew. Energy 16, 691–694 (1999)

    Article  Google Scholar 

  105. Nayak S., Tiwari G.N.: Energy and exergy analysis of photovoltaic/thermal integrated with a solar Greenhouse. Energy Build. 40, 2015–2021 (2008)

    Article  Google Scholar 

  106. Xu C., Wang Z., Li X., Sun F.: Energy and exergy analysis of solar tower plants. Appl. Energy 31, 3904–3913 (2011)

    Article  Google Scholar 

  107. Torío H., Schmidt D.: Development of system concepts for improving the performance of a waste heat district heating network with exergy analysis. Energy Build. 42, 1601–1609 (2010)

    Article  Google Scholar 

  108. Terlizzese T., Zanchini E.: Economic and exergy analysis of alternative plants for a zero carbon building complex. Energy Build. 43, 787–795 (2011)

    Article  Google Scholar 

  109. Ozgener L., Hepbasli A., Dincer I.: Energy and exergy analysis of Salihli geothermal district heating system in Manisa, Turkey. Int. J. Energy Res. 29, 393–408 (2005)

    Article  Google Scholar 

  110. Ozgener L., Hepbasli A., Dincer I.: Thermo-mechanical exergy analysis of Balcova geothermal district heating system in Izmir, Turkey. Int. J. Energy Res. 126, 293–301 (2004)

    Google Scholar 

  111. Keçebas A., Kayfeci M., Gedik E.: Performance investigation of the Afyon geothermal district heating system for building applications: exergy analysis. Appl. Thermal Eng. 31, 1229–1237 (2011)

    Article  Google Scholar 

  112. Yong P.S., Moon H.M., Yi S.C.: Exergy analysis of cryogenic air separation process for generating nitrogen. J. Ind. Eng. Chem. 8, 499 (2002)

    Google Scholar 

  113. Talbi M.M., Agnew B.: Exergy analysis: an absorption refrigerator using lithium bromide and water as the working fluids. Appl. Thermal Eng. 20, 619–630 (2000)

    Article  Google Scholar 

  114. Dincer, I.: Refrigeration Systems and Applications, Wiley, New York (2003)

  115. Parekh A.D., Tailor P.R.: Thermodynamic analysis of R507A-R23 cascade refrigeration system. Int. J. Aerospace Mech. Eng. 6, 35–39 (2012)

    Google Scholar 

  116. Maia M.L.O., Zemp R.J.: Thermodynamic analysis of multicomponent distillation column: Identifying optimal feed conditions. Braz. J. Chem. Eng. 17, 751 (2000)

    Article  Google Scholar 

  117. Chang H.S., Chuang S.C.: The intrinsic and extrinsic exergy losses of distillation columns. J. Chinese Inst. Chem. Eng. 32, 469 (2001)

    Google Scholar 

  118. Bandyopadhyay S.: Effect of feed on optimal thermodynamic performance of a distillation column. Chem. Eng. J. 88, 175 (2002)

    Article  Google Scholar 

  119. Al-Muslim H., Dincer I., Zubair S.M.: Exergy analysis of single-and two-stage crude oil distillation units. J. Energy Resour. Technol. 125, 199 (2003)

    Article  Google Scholar 

  120. Demirel Y.: Assessment of Thermodynamic performances for distillation columns. Int. J. Exergy 3, 345–361 (2006)

    Article  Google Scholar 

  121. Demirel Y.: Retrofit of distillation columns by thermodynamic analysis. Separation Sci. Technol. 41, 791–817 (2006)

    Article  Google Scholar 

  122. Demirel Y.: Thermodynamic analysis of separation systems. Separation Sci. Technol. 39, 3897–3942 (2004)

    Article  Google Scholar 

  123. Nguyen N., Demirel Y.: Retrofit of distillation columns in biodiesel production plants. Energy 35, 1625–1632 (2010)

    Article  Google Scholar 

  124. Yarin L.P., Mosyak A.: Gad Hetsroni, Fluid Flow, Heat Transfer and Boiling in Micro-Channels. Springer, Berlin (2009)

    Book  Google Scholar 

  125. Kandlikar S.G., Garimella S., Li D., Colin S., King M R.: Heat Transfer and Fluid Flow in Minichannels and Microchannels. Elsevier, Amsterdam (2006)

    Google Scholar 

  126. Dhole V.R., Linnhoff B.: Overall design of low temperature processes. Comput. Chem. Eng. 13, S105 (1994)

    Article  Google Scholar 

  127. Tondeur D., Kvaalen E.: Equipartition of entropy production. An optimality criterion for transfer and separation processes. Ind. Eng. Chem. Res. 26, 50 (1987)

    Google Scholar 

  128. Voll F.A.P., da Silva C., Rossi C.C.R.S., Guirardello R., de Castilhos F., Olivera J.V., Cardozo-Filho L: Thermodynamic analysis of fatty acid esterification for fatty acid alkyl esters production. Biomass Bioenergy 35, 781–788 (2011)

    Article  Google Scholar 

  129. Zhang G., Hua B., Chen Q.: Exergoeconomic methodology for analysis and optimization of process systems. Comput. Chem. Eng. 24, 613 (2000)

    Article  Google Scholar 

  130. Chen Q.L., Yin Q.H., Hua B.: An exergoeconomic approach for retrofit of fractionating. Energy 27, 65 (2002)

    Article  Google Scholar 

  131. Kaberger T., Mansson B.: Entropy and economic processes: physics perspectives. Ecol. Econ. 36, 165–179 (2001)

    Article  Google Scholar 

  132. Bakshi B.R., Gutowski T., Sekulic D.: Thermodynamics and the Destruction of Resources. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  133. Bastianoni S., Nielsen S.N., Marchettini N., Jorgensen S.E.: Use of thermodynamic functions for expressing some relevant aspects of sustainability. Int. J. Energy Res. 29, 53–64 (2005)

    Article  Google Scholar 

  134. Milia D., Sciubba E.: Exergy-based lumped simulation of complex systems: An interactive analysis tool. Energy 31, 100–111 (2006)

    Article  Google Scholar 

  135. Odum H.T.: Environmental Accounting. Wiley, New York (1996)

    Google Scholar 

  136. Sciubba E.: Cost analysis of energy conservation systems via a novel resource-based quantifier. Energy 28, 457 (2003)

    Article  Google Scholar 

  137. Jou D., C-Vazquez J., Lebon G.: Extended Irreversible Thermodynamics, 4th edn. Springer, London (2010)

    Book  Google Scholar 

  138. Xu M.: Thermodynamic basis of dual-phase-lagging heat conduction. J. Heat Transfer 133, 041401–7 (2011)

    Google Scholar 

  139. Ottinger, H.C.: Beyond Equilibrium Thermodynamics, Wiley, New York (2005)

  140. Beris A.N., Edwards B.J.: The thermodynamic of Flowing Systems. Oxford University Press, New York (1994)

    Google Scholar 

  141. Demirel Y., Saxena S.C.: Heat transfer through a low pressure gas enclosure as a thermal Insulator: design considerations. Int. J. Energy Res. 20, 327–338 (1996)

    Article  Google Scholar 

  142. Demirel Y., Saxena S.C.: Heat transfer in rarefied gas at a gas-solid interface. Energy 21, 99–103 (1996)

    Article  Google Scholar 

  143. Zhdanov V.M., Roldugin V.I.: Non-equilibrium thermodynamics and kinetic theory of rarefied gases. Phys.-Uspekhi. 41, 349 (1998)

    Article  Google Scholar 

  144. Sandler S.I.: An Introduction to Applied Statistical Thermodynamics. Wiley, New York (2010)

    Google Scholar 

  145. Gilson M.K., Given J.A., Bush B.L., McCammon J.A.: The statistical-thermodynamic basis for computation of binding affinities: a critical review. Biophysical J. 72, 1047–1069 (1997)

    Article  Google Scholar 

  146. Semenov S.N.: Statistical thermodynamics of material transport in non-isothermal binary systems. EPL 97, 66003 (2012)

    Article  Google Scholar 

  147. Laurendeau N.M.: Statistical Thermodynamics: Fundamentals and Applications. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  148. Keizer J.: Statistical Thermodynamics of Nonequilibrium Processes. Springer, Berlin (1987)

    Book  Google Scholar 

  149. Ruelle D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  150. de Hemptinne J.C., Mougin P., Barreau A., Ruffine L., Tamouza S., Incheke R.: Application to petroleum engineering of statistical thermodynamics-based equation of state. Oil Gas Sci. Technol. 61, 363–386 (2006)

    Article  Google Scholar 

  151. Giovangigli V., Matuszewski L.: Supercritical Fluid Thermodynamics from Equations of State. Ecole Polytechnique, R.I. 700 (2010)

    Google Scholar 

  152. Müller I.: Socio-thermodynamics—integration and segregation in a population. Contin. Mech. Thermodyn. 14, 384–404 (2002)

    Google Scholar 

  153. Müller I.: A History of Thermodynamics: The Doctrine of Energy and Entropy. Springer, London (2007)

    MATH  Google Scholar 

  154. Müller I.: Extended thermodynamics: a theory of symmetric hyperbolic field equations. Appl. Math. 53, 469–484 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaşar Demirel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirel, Y. Thermodynamic Analysis. Arab J Sci Eng 38, 221–249 (2013). https://doi.org/10.1007/s13369-012-0450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0450-8

Keywords

Navigation