Skip to main content
Log in

Experimental and Numerical Study on the Effect of Soot Injection on NOx Reduction and Radiation Enhancement in a Natural Gas Turbulent Flame

  • Research Article - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents the effect of slight mass flow rates of soot injection on the temperature profile, NOx formation, flame color, CO and CO2 formations, in the air flow inlet of a natural gas-fired laboratory cylindrical furnace. The experimental measurements were carried out using S-type thermocouple to show the temperature and Testo-350 XL gas analyzer for monitoring the concentration of NOx. The sprint CFD code was developed and used for the simulation of processes inside the furnace. The predicted temperature and NOx profiles show reasonable agreement with the experimental data. The results show that 0.012 soot mass fraction injection reduces the peak flame temperature by 211 K (2,238–2,027), while the temperature of other points does not change significantly. Furthermore, the soot injection decreases the peak of NO concentration one-tenth and exhausts NO one-sixth. In addition, the results depict that soot injection creates a yellow flame for natural gas combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Absorption coefficient

a m :

Modified absorption coefficient

b 1 :

Empirical coefficient

b T :

Empirical coefficient

E b :

Black body radiation

h :

Enthalpy

m s :

Mass fraction of soot

r :

Radial direction

R r :

Radiant flux in r direction

R x :

Radiant flux in x direction

s :

Scattering coefficient [Eqs. (4, 5)]

\({\dot{S}_{\rm{h}}}\) :

Energy source term by radiation

\({\dot {S}_{\rm{R}}}\) :

Energy source term by chemical reaction

T :

Temperature

u :

Axial velocity component

v :

Radial velocity component

x :

Axial direction

u′,v′,h′:

Fluctuating components of u, v, h

Γ:

Diffusion coefficient

ρ :

Gas phase density

References

  1. Curtis L. et al.: Adverse health effects of outdoor air pollutants. Environ. Intern. 32(6), 815–830 (2006)

    Article  MathSciNet  Google Scholar 

  2. Kampa M., Castanas E.: Human health effects of air pollution. Environ. Pollut. 151(1), 362–367 (2008)

    Article  Google Scholar 

  3. Agrawal M. et al.: Effect of air pollution on peri-urban agriculture: a case study. Environ. Pollut. 126(2), 323–329 (2003)

    Article  Google Scholar 

  4. Ramanathan V., Feng Y.: Air pollution, greenhouse gases and climate change: global and regional perspectives. Atmos. Environ. 43(1), 37–50 (2009)

    Article  Google Scholar 

  5. Chung S.J., Pillai K.C., Moon I.S.: A sustainable environmentally friendly NOx removal process using Ag(II)/Ag(I)-mediated electrochemical oxidation. Sep. Purif. Technol. 65(1), 156–163 (2009)

    Article  Google Scholar 

  6. Boke Y.E., Aydin O.: Effect of the radiation surface on temperature and NOx emission in a gas fired furnace. Fuel. 88(10), 1878–1884 (2009)

    Article  Google Scholar 

  7. Hunty W.P., Lee G.K.: Improved radiative heat transfer from hydrogen flames. Int. J. Hydrogen Energy. 16(1), 47–53 (1991)

    Article  Google Scholar 

  8. Paul S.C., Paul M.C.: Radiative heat transfer during turbulent combustion process. Int. Commun. Heat Mass Transf. 37, 1–6 (2010)

    Article  Google Scholar 

  9. Beltrame A. et al.: Soot and NO formation in methane–oxygen enriched diffusion flames. Computers Fluids 124, 295–310 (2001)

    Google Scholar 

  10. Kontogeorgos D.A., Keramida E.P., Founti M.A.: Assessment of simplified thermal radiation models for engineering calculations in natural gas-fired furnace. Int. J. Heat Mass Transf. 50, 5260–5268 (2007)

    Article  MATH  Google Scholar 

  11. Baltasar J. et al.: Flue gas recirculation in a gas-fired laboratory furnace: measurements and modelling. Fuel 76(10), 919–929 (1997)

    Article  Google Scholar 

  12. Kim H.K. et al.: NO reduction in 0.03–0.2 MW oxy-fuel combustor using flue gas recirculation technology. In: Proc. Combust. Inst. 31(1), 3377–3384 (2007)

    Article  Google Scholar 

  13. Tayyeb Javed M. et al.: Effect of oxygenated liquid additives on the urea based SNCR process. J. Environ. Manag. 90(11), 3429–3435 (2009)

    Article  Google Scholar 

  14. Moghiman M. et al.: Measurements and modeling of soot and CO pollutant emissions in a large oil fired furnace. Arab. J. Sci. Eng. 34(2B), 271–284 (2009)

    Google Scholar 

  15. Shih T.H. et al.: A new k-[epsilon] eddy viscosity model for high reynolds number turbulent flows. Computers Fluids. 24(2), 227–238 (1995)

    Article  MATH  Google Scholar 

  16. Wang L. et al.: Interactions among soot, thermal radiation, and NOx emissions in oxygen-enriched turbulent nonpremixed flames: a computational fluid dynamics modeling study. Combust. Flame. 141(1–2), 170–179 (2005)

    Article  Google Scholar 

  17. Magnussen B.F., Hjertager B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 16(1), 719–729 (1977)

    Article  Google Scholar 

  18. Warnatz J., Mass U., Dibble R.W.: Combustion, Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation, 4th edn. Springer, Heidelberg (2006)

    Google Scholar 

  19. Tesner P.A.: Smegiriova T.D., Knorre V.G. (1971) Kinetics of dispersed carbon formation. Combust. Flame 17(1), 253–260 (1971)

    Article  Google Scholar 

  20. Syred N. et al.: Development of fragmentation models for solid fuel combustion and gasification as subroutines for inclusion in CFD codes. Fuel 86(14), 2221–2231 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saeedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourhoseini, S.H., Saeedi, A. & Moghiman, M. Experimental and Numerical Study on the Effect of Soot Injection on NOx Reduction and Radiation Enhancement in a Natural Gas Turbulent Flame. Arab J Sci Eng 38, 69–75 (2013). https://doi.org/10.1007/s13369-012-0412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-012-0412-1

Keywords

Navigation